Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6121
DC FieldValueLanguage
dc.contributor.authorallDel Pezzo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallBianco, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2010-09-22T09:45:23Zen
dc.date.available2010-09-22T09:45:23Zen
dc.date.issued2010-08en
dc.identifier.urihttp://hdl.handle.net/2122/6121en
dc.description.abstractFollowing the numerical scheme of Yoshimoto we synthesized seismogram envelopes in the multiple scattering framework.We supposed the earth model constituted by a inhomogeneous crust overlying a transparent mantle. In this model velocity is assumed depth-dependent through a continuous function of the depth, v = v(h); Moho discontinuity is approximated by a sharp increase of the velocity around the crust–mantle boundary; inhomogeneity in the crust is parametrized through a depth-dependent scattering coefficient (the inverse of mean free path) g = g0 f (h), with f (h) function of depth, and g0 the scattering coefficient at zero depth; intrinsic attenuation is parametrized in terms of the intrinsic attenuation coefficient, ηi , that is assumed independent of depth. Generating a suite of energy envelopes as a function of lapse time and distance, for reasonable values of B0 , the seismic albedo and Le−1, the extinction length inverse (which are functions of g0 and ηi ), we span a wide range including most of the measurements done through the world. Then, we apply the ordinary MLTWA technique to these synthetic envelopes. In this application, we assume a constant g and a constant velocity, v = <v(h)> which equals the average of v(h) calculated in the depth range characteristic of the volume encompassed by the scattered waves. In this way, we obtain the estimates of B0, and Le−1, for a constant half-space. The relationship between the estimates of B0 and Le−1, obtained assuming half-space, and the correspondent values used in the simulation, results to be well approximated by a second-order polynomial. Then, evaluating the best fit polynomial coefficients, we obtain a correspondence map between attenuation parameters retrieved for a uniform model with those characteristic of a more realistic structure. This map is useful to reinterpret all the couples B0 and Le−1 already calculated through the world in geological structures similar to the one adopted in our simulation. Results show that scattering and intrinsic-attenuation coefficients estimated using MLTWA in the assumption of a uniform half-space are always overestimateden
dc.language.isoEnglishen
dc.publisher.nameWILEY-BLACKWELL PUBLISHING, INCen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries2/182(2010)en
dc.subjectCoda wavesen
dc.subjectSeismic attenuationen
dc.subjectWave scattering and diffractionen
dc.titleTwo-layer earth model corrections to theMLTWA estimates of intrinsic- and scattering-attenuation obtained in a uniform half-spaceen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber949-955en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.identifier.doi10.1111/j.1365-246X.2010.04648.xen
dc.relation.referencesAki, K., 1980. Scattering and attenuation of shear waves in the lithosphere, J. geophys. Res., 85, 6496–6504. Badi, G., Del Pezzo, E., Ibanez, J.M., Bianco, F., Sabbione, N. & Araujo, M., 2009. Depth dependent seismic scattering attenuation in the Nuevo Cuyo region (southern central Andes) Geophys. Res. Lett., 36, L24307, doi:10.1029/2009GL041081. Bianco, F., Del Pezzo, E., Castellano, M., Ibanez, J. & Di Luccio, F., 2002. Separation of intrinsic and scattering seismic attenuation in the Southern Apennine zone, Italy, Geophys. J. Int., 150, 10–22. Bianco, F., Del Pezzo, E., Malagnini, L., Di Luccio, F. & Akinci, A., 2005. Separation of depth-dependent intrinsic and scattering seismic attenuation in the northeastern sector of the Italian peninsula, Geophysical J. Int., 161(1), 130–142. Cerveny,V.&Ravindra, R., 1971. Theory of SeismicHeadWaves. University of Toronto Press, Toronto, Ontario. Di Stefano, R., Kissling, E., Chiarabba, C., Amato, A. & Giardini, D., 2009. Shallow subduction beneath Italy: three-dimensional images of the Adriatic-European-Tyrrhenian lithosphere system based on high-quality P wave arrival times, J. geophys. Res., 114, B05305, doi:10.1029/2008JB005641. Fehler, M., Hoshiba, M., Sato, H. & Obara, K., 1992. Separation of scattering and intrinsic attenuation for the Kanto-Tokai Region, Japan, using measurements of S-wave energy versus hypocentral distance, Geophys. J. Int., 108, 787–800. Hoshiba, M., 1994. Simulation of coda wave envelope in-depth dependent scattering and absorption structure, Geophys. Res. Lett., 21(25), 2853–2856. Hoshiba, M., 1997. Seismic coda wave envelope in depth-dependent S wave velocity structure, Phys. Earth planet. Int., 104, 15–22. Koch, K. & Stump, B.W., 1996. Constraints for upper mantle shear-wave models of the basin and range from surface-wave inversion, Bull. seism. Soc. Am., 86, 1591–1607. Korn, M., 1993. Determination of site-dependent scattering-Q from Pwave coda analysis with an energy-flux model, Geophys. J. Int., 113, 54–72. Lemzikov, V., 2007. Intrinsic attenuation and scattering of shear waves in the lithosphere of Kamchatka, J. Volc. Seismol., 1(3), 185–197. Margerin, L. & Nolet, G., 2003. Multiple scattering of high-frequency seismic waves in the deep earth: Modeling and numerical examples, J. geophys. Res., 108, doi:10.1029/2002JB001974. Margerin, L., Campillo, M. & van Tiggelen, B., 1998. Radiative transfer and diffusion of waves in a layered medium: new insight into coda Q, Geophys. J. Int., 134, 596–612. Margerin, L., Campillo, M., Shapiro, N.M. & van Tiggelen., B., 1999. Residence time of diffuse waves in the crust as a physical interpretation of coda: application to seismograms recorded in Mexico, Geophys. J. Int., 138, 343–352. Mayeda, K., Koyanagi, S., Hoshiba, M., Aki, K. & Zeng, Y., 1992. A comparative study of scattering, intrinsic and coda-Q for Hawaii, Long Valley and Central California between 1.5 and 15.0 Hz, J. geophys. Res., 97, 6643–6659. Parsiegla, N. & Wegler, U., 2008. Modelling of seismic energy transport at volcanoes with real topography and complex propagation medium, J. Volc. Geotherm. Res., 171(3–4), 229–236. Paasschens, J., 1997. Solution of the time-dependent Boltzmann equation, Phys. Rev. E, 56, 1135–1141. Sato, H. & Fehler, M., 1998. Seismic Wave Propagation and Scattering in the Heterogeneous Earth. AIP Press/Springer Verlag, New York 2000. Tuv´e, T., Bianco, F. Ib´a˜nez, J., Patan´e, D., Del Pezzo, E. & Bottari, A., 2006. Attenuation study in the Straits of Messina area (Southern Italy), Tectonophysics, 421, 173–185. Ugalde, A., Tripathi, J.N., Hoshiba, M. & Rastogi, B.K., 2007. Intrinsic and scattering attenuation in Western India from aftershocks of the 26 January, 2001 Kachchh earthquake, Tectonophysics, 429(1–2), 111–123. Wegler, U., 2005. Diffusion of seismic waves in layered media: boundary conditions and analytical solutions, Geophys. J. Int., 163, 1123–1135. Yan, Z. & Clayton, R.W., 2007. Regional mapping of the crustal structure in southern California from receiver functions, J. geophys. Res., 112, B05311, doi:10.1029/2006JB004622, 2007. Yoshimoto, K., 2000. Monte carlo simulation of seismogram envelopes in scattering media, J. geophys. Res, 105, 6153–6161. Zeng, Y., 1991. Compact solutions for multiple scattered wave energy in time domain, Bull. seism. Soc. Am., 81, 1022–1029. Wu, R.S., 1985. Multiple scattering and energy transfer of seismic waves – separation of scattering effect from intrinsic attenuation – I. Theoretical modelling. Geophys. J. R. astr. Soc., 82, 57–80.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorDel Pezzo, E.en
dc.contributor.authorBianco, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-6981-5967-
crisitem.author.orcid0000-0001-5400-7724-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
DelPBia-2010.pdf316.5 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

19
checked on Feb 10, 2021

Page view(s)

118
checked on Apr 20, 2024

Download(s)

35
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric