Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6105
DC FieldValueLanguage
dc.contributor.authorallRuch, J.; Dipartimento di Scienze Geologiche, Università Roma Tre, Rome, Italyen
dc.contributor.authorallAcocella, V.; Dipartimento di Scienze Geologiche, Università Roma Tre, Rome, Italyen
dc.contributor.authorallStorti, F.; Dipartimento di Scienze Geologiche, Università Roma Tre, Rome, Italyen
dc.contributor.authorallNeri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallPepe, S.; IREA, Consiglio Nazionale delle Ricerche, Naples, Italyen
dc.contributor.authorallSolaro, G.; IREA, Consiglio Nazionale delle Ricerche, Naples, Italyen
dc.contributor.authorallSansosti, E.; IREA, Consiglio Nazionale delle Ricerche, Naples, Italyen
dc.date.accessioned2010-09-07T13:57:54Zen
dc.date.available2010-09-07T13:57:54Zen
dc.date.issued2010-08-21en
dc.identifier.urihttp://hdl.handle.net/2122/6105en
dc.description.abstractFlank instability is common at volcanoes, even though the subsurface structures, including the depth to a detachment fault, remain poorly constrained. Here, we use a multidisciplinary approach, applicable to most volcanoes, to evaluate the detachment depth of the unstable NE flank of Mt. Etna. InSAR observations of Mount Etna during 1995–2008 show a trapdoor subsidence of the upper NE flank, with a maximum deformation against the NE Rift. The trapdoor tilt was highest in magnitude in 2002–2004, contemporaneous with the maximum rates of eastward slip along the east flank. We explain this deformation as due to a general eastward displacement of the flank, activating a rotational detachment and forming a rollover anticline, the head of which is against the NE Rift. Established 2D rollover construction models, constrained by morphological and structural data, suggest that the east‐dipping detachment below the upper NE flank lies at around 4 km below the surface. This depth is consistent with seismicity that clusters above 2–3 km below sea level. Therefore, the episodically unstable NE flank lies above an east‐dipping rotational detachment confined by the NE Rift and Pernicana Fault. Our approach, which combines short‐term (InSAR) and long‐term (geological) observations, constrains the 3D geometry and kinematics of part of the unstable flank of Etna and may be applicable and effective to understand the deeper structure of volcanoes undergoing flank instability or unrest.en
dc.description.sponsorshipThis work was partially funded by INGV and the DPC‐INGV project “Flank”, and partially by the ASI (SRV project).en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeophysical research lettersen
dc.relation.ispartofseries/37(2010)en
dc.subjectflank instabilityen
dc.subjectfaulten
dc.subjectInSARen
dc.subjectEtnaen
dc.subjectrolloveren
dc.titleDetachment depth revealed by rollover deformation: An integrated approach at Mount Etnaen
dc.title.alternativeDETACHMENT DEPTH OF AN UNSTABLE VOLCANOen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberL16304en
dc.identifier.URLhttp://www.agu.org/pubs/crossref/2010/2010GL044131.shtmlen
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoringen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zonesen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.09. Structural geologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.05. Stressen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonicsen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.subject.INGV05. General::05.08. Risk::05.08.99. General or miscellaneousen
dc.identifier.doi10.1029/2010GL044131en
dc.relation.referencesAcocella, V., and M. Neri (2005), Structural features of an active strike‐slip fault on the sliding flank of Mt. Etna (Italy), J. Struct. Geol., 27, 343–355, doi:10.1016/j.jsg.2004.07.006. Azzaro, R., C. Del Negro, and R. Rasà (1997), Magnetic evidence of a buried graben‐like structure in the Pernicana—Provenzana area (Mt. Etna, Sicily) and hydrogeological implications, Acta Vulcanol., 9(1–2), 23–30. Behncke, B., and M. Neri (2003), Cycles and trends in the recent eruptive behaviour of Mount Etna (Italy), Can. J. Earth Sci., 40, 1405–1411, doi:10.1139/e03-052. Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti (2002), A new algorithm for surface deformation monitoring based on small baseline differential SAR Interferograms, IEEE Trans. Geosci. Remote Sens., 40(11), 2375–2383. Bonforte, A., and G. Puglisi (2006), Dynamics of the eastern flank of Mt. Etna volcano (Italy) investigated by a dense GPS network, J. Volcanol. Geotherm. Res., 153, 357–369, doi:10.1016/j.jvolgeores.2005.12.005. Bonforte, A., A. Bonaccorso, F. Guglielmino, M. Palano, and G. Puglisi (2008), Feeding system and magma storage beneath Mt. Etna as revealed by recent inflation/deflation cycles, J. Geophys. Res., 113, B05406, doi:10.1029/2007JB005334. Bonforte, A., S. Gambino, and M. Neri (2009), Intrusion of eccentric dikes: The case of the 2001 eruption and its role in the dynamics of Mt. Etna volcano, Tectonophysics, 471, 78–86, doi:10.1016/j.tecto.2008.09.028. Borgia, A., L. Ferrari, and G. Pasquaré (1992), Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna, Nature, 357, 231–235, doi:10.1038/357231a0. Bousquet, J. C., and G. Lanzafame (2001), Nouvelle interprétation des fractures des éruptions latérales de l’Etna: Conséquences pour son cadre tectonique, Bull. Soc. Geol. Fr., 172, 455–467, doi:10.2113/172.4.455. Dula, W. F. (1991), Geometric models of listric normal faults and rollover folds, AAPG Bull., 75(10), 1609–1625. Garduño, V. H., M. Neri, G. Pasquarè, A. Borgia, and A. Ribaldi (1997), Geology of the NE‐Rift of Mount Etna (Sicily, Italy), Acta Vulcanol., 9(1–2), 91–100. Groppelli, G., and A. Tibaldi (1998), Control of rock rheology on deformation style and slip‐rate along the active Pernicana Fault, Mt. Etna, Italy, Tectonophysics, 304, 521–537. Lo Giudice, E., and R. Rasà (1992), Very shallow earthquakes and brittle deformation in active volcanic areas: The Etnean region as an example, Tectonophysics, 202, 257–268, doi:10.1016/0040-1951(92)90111-I. Mauduit, T., and J. P. Brun (1998), Growth fault/rollover systems: Birth, growth, and decay, J. Geophys. Res., 103, 18,119–18,136, doi:10.1029/97JB02484. McClay, K. R., and A. D. Scott (1991), Experimental models of hangingwall deformation in ramp‐flat listric extensional fault systems, Tectonophysics, 188, 85–96, doi:10.1016/0040-1951(91)90316-K. Montgomery‐Brown, E. K., P. Segall, and A. Miklius (2009), Kilauea slow slip events: Identification, source inversions, and relation to seismicity, J. Geophys. Res., 114, B00A03, doi:10.1029/2008JB006074. Neri, M., V. Acocella, and B. Behncke (2004), The role of the Pernicana Fault System in the spreading of Mount Etna (Italy) during the 2002–2003 eruption, Bull. Volcanol., 66, 417–430, doi:10.1007/ s00445-003-0322-x. Neri, M., V. Acocella, B. Behncke, V. Maiolino, A. Ursino, and R. Velardita (2005), Contrasting triggering mechanisms of the 2001 and 2002–2003 eruptions of Mount Etna (Italy), J. Volcanol. Geotherm. Res., 144, 235–255, doi:10.1016/j.jvolgeores.2004.11.025. Neri, M., F. Guglielmino, and D. Rust (2007), Flank instability on Mount Etna: Radon, radar interferometry and geodetic data from the southern boundary of the unstable sector, J. Geophys. Res., 112, B04410, doi:10.1029/2006JB004756. Neri, M., F. Casu, V. Acocella, G. Solaro, S. Pepe, P. Berardino, E. Sansosti, T. Caltabiano, P. Lundgren, and R. Lanari (2009), Deformation and eruptions at Mt. Etna (Italy): A lesson from 15 years of observations, Geophys. Res. Lett., 36, L02309, doi:10.1029/2008GL036151. Palano, M., et al. (2006), Kinematics and strain analyses of the eastern segment of the Pernicana Fault (Mt. Etna, Italy) derived from geodetic techniques (1997–2005), Ann. Geophys., 49, 1105–1117. Puglisi, G., A. Bonforte, A. Ferretti, F. Guglielmino, M. Palano, and C. Prati (2008), Dynamics of Mount Etna before, during, and after the July–August 2001 eruption inferred from GPS and differential synthetic aperture radar interferometry data, J. Geophys. Res., 113, B06405, doi:10.1029/ 2006JB004811. Rust, D., B. Behncke, M. Neri, and A. Ciocanel (2005), Nested zones of instability in the Mount Etna volcanic edifice, Sicily, J. Volcanol. Geotherm. Res., 144, 137–153, doi:10.1016/j.jvolgeores.2004.11.021. Solaro, G., V. Acocella, S. Pepe, J. Ruch, M. Neri, and E. Sansosti (2010), Anatomy of an unstable volcano from InSAR: Multiple processes affecting flank instability at Mt. Etna, 1994–2008, J. Geophys. Res., doi:10.1029/ 2009JB000820, in press. Tibaldi, A., and G. Groppelli (2002), Volcano‐tectonic activity along structures of the unstable NE flank of Mt.Etna (Italy) and their possible origin, J. Volcanol. Geotherm. Res., 115, 277–302, doi:10.1016/S0377-0273 (01)00305-5. van Wyk de Vries, B., and P. W. Francis (1997), Catastrophic collapse at stratovolcanoes induced by slow volcano spreading, Nature, 387, 387–390, doi:10.1038/387387a0. Voight, B., and D. Elsworth (1997), Failure of volcano slopes, Geotechnique, 47(1), 1–31, doi:10.1680/geot.1997.47.1.1. Watters, R. J., D. R. Zimbelman, S. D. Bowman, and J. K. Krowley (2000), Rock mass strength assessment and significance to edifice stability, Mount Rainier and Mount Hood, Cascade Range volcanoes, Pure Appl. Geophys., 157, 957–976, doi:10.1007/s000240050012. White, N. J., J. A. Jackson, and D. P. McKenzie (1986), The relationship between the geometry of normal fault and that of sedimentary layers in their hanging walls, J. Struct. Geol., 8, 897–909, doi:10.1016/0191- 8141(86)90035-0. Xiao, H., and J. Suppe (1992), Origin of rollover, AAPG Bull., 76(4), 509–529.en
dc.description.obiettivoSpecifico1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcanien
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.obiettivoSpecifico4.3. TTC - Scenari di pericolosità vulcanicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorRuch, J.en
dc.contributor.authorAcocella, V.en
dc.contributor.authorStorti, F.en
dc.contributor.authorNeri, M.en
dc.contributor.authorPepe, S.en
dc.contributor.authorSolaro, G.en
dc.contributor.authorSansosti, E.en
dc.contributor.departmentDipartimento di Scienze Geologiche, Università Roma Tre, Rome, Italyen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università Roma Tre, Rome, Italyen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università Roma Tre, Rome, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIREA, Consiglio Nazionale delle Ricerche, Naples, Italyen
dc.contributor.departmentIREA, Consiglio Nazionale delle Ricerche, Naples, Italyen
dc.contributor.departmentIREA, Consiglio Nazionale delle Ricerche, Naples, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento Scienze Geologiche, Università Roma Tre, Roma, Italy-
crisitem.author.deptUniversità Roma Tre, Dipartimento di Scienze Geologiche, Rome, Italy-
crisitem.author.deptDipartimento di Scienze Geologiche, Universita` 'Roma Tre', Rome, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptCNR-IREA-
crisitem.author.deptIREA-CNR, Naples, Italy.-
crisitem.author.deptCNR-IREA-
crisitem.author.orcid0000-0002-5890-3398-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2010 Ruch et al 2010GL044131_2010.pdfArticle741.67 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

32
checked on Feb 10, 2021

Page view(s) 50

257
checked on Apr 20, 2024

Download(s)

35
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric