Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6067
DC FieldValueLanguage
dc.contributor.authorallFederico, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallCorso, P. P.; Dipartimento di Scienze Fisiche e Astronomiche, Universita` di Palermo.Italyen
dc.contributor.authorallFiordilino, E.; Dipartimento di Scienze Fisiche e Astronomiche, Universita` di Palermo,Italyen
dc.contributor.authorallCardellini, C.; Dipartimento di Scienze della Terra, Universita` di Perugia,Italyen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallParello, E.; Dipartimento CFTA, Universita` degli Studi di Palermo, Italyen
dc.contributor.authorallPisciotta, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2010-07-01T07:24:30Zen
dc.date.available2010-07-01T07:24:30Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6067en
dc.description.abstractThe soil CO2 degassing is affected by processes of isotope exchange and fractionation during transport across the soil, which can deeply modify the pristine isotope composition. This has been observed in the Solfatara volcano, upon a field survey of 110 points, where the CO2 flux was measured, together with temperature, CO2 concentration and oxygen and carbon isotopes within the soil. Furthermore, in some selected sites, the measurements were made at different depths, in order to analyze vertical gradients. Oxygen isotope composition appears controlled by exchange with soil water (either meteoric or fumarolic condensate), due to the fast kinetic of the isotopic equilibrium between CO2 and water. Carbon isotope composition is reliably controlled by transport-driven fractionation, due to the differences in diffusion coefficients between 13C16O2 and 12C16O2. We model the processes affecting CO2 transport across the soil in La Solfatara volcano by means of the Dusty Gas Model applied to a multicomponent system, to evaluate the reciprocal effect on diffusion of involved gases, i.e. 12C16O2, 13C16O2, N2 and O2 in our case. Both numerical and simplified analytical solutions of the equations based on the Dusty Gas Model are given. The modeling results fit well with the experimental data and put in evidence an isotope fractionation of carbon up to about þ4:4& with respect to the source value in the soil gas. This fractionation is independent from the entity of the CO2 flux, and occurs as long as a concentration gradient exists within the soil. On these grounds, the Dusty Gas Model can be applied to whichever diffusing gas mixture to evaluate the extent of chemical and/or isotopic fractionation that can affect ascending gases upon diffusion in any geothermal, volcanic or tectonic area.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofGeochimica et Cosmochimica Actaen
dc.relation.ispartofseries12/74(2010)en
dc.subjectisotope exchangeen
dc.subjectdegassingen
dc.titleCO2 degassing at La Solfatara volcano (Phlegrean Fields): Processes affecting d13C and d18O of soil CO2en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber3521-3528en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniquesen
dc.identifier.doi10.1016/j.gca.2010.03.010en
dc.relation.referencesAbriola L. M., Fen C.-S. and Reeves H. W. (1992) Numerical simulation of unsteady organic vapor transport in porous media using the dusty gas model. In Subsurface Contamination by Immiscible Fluids (ed. K. U. Wyre). Balkema, Rotterdam, pp. 195–202. Abu-El-Sha-r W. and Abriola L. M. (1997) Experimental assessment of gas transport mechanisms in natural porous media: parameter evaluation. Water Resour. Res. 33, 505–516. Allard P., Carbonelle J., Dajlevic D., Le Bronec J., Morel P., Robe M. C., Maurenas J. M., Faivre-Pierret R., Martin D., Sabroux J. C. and Zettwoog P. (1991) Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351, 387–391. Amudson R., Stern L., Baisden T. and Wang Y. (1998) The isotopic composition of soil and soil-respired CO2. Geoderma 82, 83–114. Baubron J.-C., Allard P. and Toutain J.-P. (1990) Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy. Nature 344, 51–53. Bergfeld D., Goff F. and Allard P. (2001) High CO2 flux measurements in volcanic and geothermal areas, methodologies and results. Chem. Geol., 177. Bird R. B., Stewart W. E. and Lightfoot E. N. (1960) Transport Phenomena. John Wiley, New York. Brenninkmeijer C. A. M., Kraft P. and Mook W. G. (1983) Oxygen isotope fractionation between CO2 and H2O. Isotope Geosci. 1, 181–190. Caliro S., Chiodini G., Moretti R., Avino R., Granieri D., Russo M. and Fiebig J. (2007) The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim. Cosmochim. Acta 71, 3040–3055. Camarda M., De Gregorio S., Favara R. and Gurrieri S. (2007) Evaluation of carbon isotope fractionation of soil CO2 under an advective–diffusive regimen: a tool for computing the isotopic composition of unfractionated deep source. Geochim. Cosmochim. Acta 71, 3016–3027. Carapezza M. L. and Granieri D. (2004) CO2 soil flux at Vulcano (Italy): comparison between active and passive methods. Appl. Geochem. 19, 73–88. Cerling T. E. (1984) The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett. 71, 229–240. Cerling T. E., Solomon D. K., Quade J. and Bowman J. R. (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim. Cosmochim. Acta 55, 3403–3405. Chen N. H. and Othmer D. F. (1962) New generalised equation for gas diffusion coefficient. J. Chem. Eng. Data 7, 37–41. Chiodini G., D’Alessandro W. and Parello F. (1996) Geochemistry of gases and waters discharged by the mud volcanoes at Paterno` , Mt. Etna (Italy). Bull. Volcanol. 58, 51–58. Chiodini G. and Marini L. (1998) Hydrothermal gas equilibria: the H2O–H2–CO2–CO–CH4 system. Geochim. Cosmochim. Acta 62, 2673–2687. Chiodini G., Cioni R., Guidi M., Raco B. and Marini L. (1998) Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 13, 543–552. Chiodini G., Frondini F., Kerrick D. M., Rogie J. F., Parello F., Peruzzi A. R. and Zanzari A. (1999) Quantification of deep CO2 fluxes from Central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chem. Geol. 159, 205–222. Chiodini G., Allard P., Caliro S. and Parello F. (2000) 18O exchange between steam and carbon dioxide in volcanic and hydrothermal gases: implications for the source of water. Geochim. Cosmochim. Acta 64, 2479–2488. Chiodini G., Frondini F., Cardellini C., Granieri D., Marini L. and Ventura G. (2001) CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J. Geophys. Res. 106, 16213–16221. Chiodini G., Todesco M., Caliro S., Del Gaudio C., Macedonio G. and Russo M. (2003) Magma degassing as a trigger of bradyseismic events; the case of Phlegrean Fields (Italy). Geophys. Res. Lett. 30, 1434. doi:10.1029/2002GL01679. Chiodini G., Caliro S., Cardellini C., Avino R., Granieri D. and Schmidt A. (2008) Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth Planet. Sci. Lett. 274, 372–379. COESA (1976) U.S. Standard Atmosphere, 1976. U.S. Government Printing Office, Washington, DC. Costa A. (2006) Permeability–porosity relationship: a reexamination of the Kozeny–Carman equation based on a fractal porespace geometry assumption. Geophys. Res. Lett. 33, L02318. doi:10.1029/2005GL025134. Crane Company (1988) Flow of fluids through valves, fittings, and pipe. Technical Paper No. 410 (TP 410). Deines P. (1980) The isotopic composition of reduced organic carbon. In Handbook of Environmental Isotope Geochemistry, vol. 1 (eds. P. Fritz and J. Ch. Fontes). Elsevier, New York, pp. 329–406. Evans W. C., Sorey M. L., Kennedy B. M., Stonestrom D. A., Rogie J. D. and Shuster D. L. (2001) High CO2 emissions through porous media: transport mechanisms and implications for flux measurement and fractionation. Chem. Geol. 177, 15– 29. Farquhar D. G., Lloyd J., Taylor J. A., Flanagan L. B., Syvertsen J. P., Hubick K. T., Chin Wong S. and Ehleringer J. R. (1993) Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature 363, 439–443. Farrar C. D., Sorey M. L., Evans W. C., Howle J. F., Kerr B. D., Kennedy B. M., King C.-Y. and Southon J. R. (1995) Forestkilling diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest. Nature 376, 675–678. Feng X., Peterson J. C., Quideau S. A., Virginia R. A., Graham R. C., Sonder L. J. and Chadwick O. A. (1999) Distribution, accumulation, and fluxes of soil carbon in four monoculture lysimeters at San Dimas Experimental Forest, California. Geochim. Cosmochim. Acta 63, 1319–1333. Heid J. G., McMahin J. J., Nielson R. F. and Yuster S. T. (1950) Study of the permeability of rocks to homogeneous fluids. In Drilling and Production Practice. American Petroleum Institute, New York, pp. 230–244. IAPWS (1997) Revised Release on the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance. International Association for the Properties of Water and Steam, Erlangen, Germany. Lewicki J. L., Evans W. C., Hilley G. E., Sorey M. L., Rogie J. D. and Brantley S. L. (2003) Shallow soil CO2 flow along the San Andreas and Calaveras Faults, California. J. Geophys. Res. 108(B4), 2187. doi:10.1029/2002JB002141. Lide David R. (Ed.) (2007) CRC Handbook of Chemistry and Physics, 87th ed. Taylor and Francis, Boca Raton, FL (CDROM Version 2007). Markovic´ J. and Omorjan R. (2007) Applicability of linearized Dusty Gas Model for multicomponent diffusion of gas mixtures in porous solids. Acta Periodica Technol. APTEFF 38, 75–84. Mason E. A. and Malinauskas A. P. (1983) Gas Transport in Porous Media: The Dusty Gas Model. Chem. Eng. Monogr. 17, Elsevier, New York. Massman W. J. (1998) A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmos. Environ. 32, 1111–1127. Massman J. and Farrier D. F. (1992) Effects of atmospheric pressures on gas transport in the vadose zone. Water Resour. Res. 28, 777–791. Miller J. B., Yakir D., White J. W. C. and Tansl P. P. (1999) Measurement of 18O=16O in the soil–atmosphere CO2 flux. Global Biogeochem. Cycles 13, 761–774. Mills G. A. and Urey H. C. (1940) The kinetics of isotopic exchange between carbon dioxide, bicarbonate ion, carbonate ion and water. J. Am. Chem. Soc. 62, 1019–1026. Notsu K., Sugiyama K., Hosoe M., Uemura A., Shimoike Y., Tsunomori F., Sumino H., Yamamoto J., Mori T. and Herna´ndez P. A. (2005) Diffuse CO2 efflux from Iwojima volcano Izu-Ogasawara arc, Japan. J. Volcanol. Geotherm. Res. 139, 147–161. Orsi G., De Vita S. and Di Vito M. (1996) The restless, resurgent Campi Flegrei nested caldera Italy: constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 74, 179–214. Peng D. Y. and Robinson D. B. (1976) A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64. doi:10.1021/i160057a011. Penman H. L. (1940) Gas and vapor movement in the soil. I. The diffusion of vapors through porous solids. J. Agric. Sci. 30, 437–462. Philip J. R. and De Vries D. A. (1957) Moisture movement in porous materials under temperature gradients. Trans. Am. Geophys. Union 38, 222–232. Reid R. C., Prausnitz J. M. and Poling B. E. (1987) The Properties of Gases and Liquids. McGraw-Hill, New York. Rosi M. and Sbrana A. (1987) The Phlegrean Fields. CNR Quad. La Ricerca Scientifica 114, 1–175. Sahimi M. (1995) Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. VCH Publisher, New York. Saul A. and Wagner W. (1987) International equations for the saturation properties of ordinary water substance. J. Phys. Chem. Ref. Data 16, 893–901. Severinghaus J. P., Bender M. L., Keeling R. F. and Broecker W. S. (1996) Fractionation of soil gases by diffusion of water vapor, gravitational settling, and thermal diffusion. Geochim. Cosmochim. Acta 60, 1005–1018. Stern L., Baisden W. T. and Amundson R. (1999) Processes controlling the oxygen isotope ratio of soil CO2: analytic and numerical modeling. Geochim. Cosmochim. Acta 63, 799–814. Styles J. M., Raupach M. R., Farquhar G. D., Kolle O. K., Lawton A., Brand W. A., Werner R. A., Jordan A., Detlef Aschulze E., Shibistova O. and Lloyd J. (2002) Soil and canopy CO2, 13CO2, H2O and sensible heat flux partitions in a forest canopy inferred from concentration measurements. Tellus 54B, 655–676. Terzaghi K. and Peck R. B. (1968) Soil Mechanics in Engineering Practice. John Wiley and Sons, NewYork, pp. 729. Thorstenson D. C. and Pollock D. W. (1989) Gas transport in unsaturated zones: multicomponent systems and the adequacy of Fick’s laws. Water Resour. Res. 25, 477–507. Toutain J.-P. and Baubron J.-C. (1999) Gas geochemistry and seismotectonics: a review. Tectonophysics 304, 1–27. Webb S. W. (1998) Gas-phase diffusion in porous media – evaluation of an advective–dispersive formulation and the dusty-gas model for binary mixtures. J. Porous Med. 1, 187– 199. Webb S. W. and Pruess K. (2003) The use of Fick’s Law for modeling trace gas diffusion in porous media. Transport Porous Med. 51, 327–341. Webb S. W. and Ho C. K. (1998) Review of enhanced vapor diffusion in porous media. Report SAND098-1819C, Sandia National Laboratories, Albuquerque, NM. Werner C., Chiodini G., Granieri D., Caliro S., Avino R. and Russo M. (2006) Eddy covariance measurements of hydrothermal heat flux at Solfatara volcano, Italy. Earth Planet. Sci. Lett. 244, 72–82. Yakir D. and Sternberg L. S. (2000) The use of stable isotopes to study ecosystem gas exchange. Oecologia 123, 297–311.en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorFederico, C.en
dc.contributor.authorCorso, P. P.en
dc.contributor.authorFiordilino, E.en
dc.contributor.authorCardellini, C.en
dc.contributor.authorChiodini, G.en
dc.contributor.authorParello, E.en
dc.contributor.authorPisciotta, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento di Scienze Fisiche e Astronomiche, Universita` di Palermo.Italyen
dc.contributor.departmentDipartimento di Scienze Fisiche e Astronomiche, Universita` di Palermo,Italyen
dc.contributor.departmentDipartimento di Scienze della Terra, Universita` di Perugia,Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento CFTA, Universita` degli Studi di Palermo, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDipartimento di Scienze Fisiche e Astronomiche, Universita` di Palermo.Italy-
crisitem.author.deptDipartimento di Scienze Fisiche e Astronomiche, Universita` di Palermo,Italy-
crisitem.author.deptDipartimento di fisica e Geologia di Perugia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptDipartimento CFTA, Universita` degli Studi di Palermo, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0001-8887-2580-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.orcid0000-0002-2289-3028-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2010,FedericoetalSolC13.pdf1.83 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

15
checked on Feb 7, 2021

Page view(s) 10

559
checked on Apr 13, 2024

Download(s) 50

76
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric