Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6067

Authors: Federico, C.*
Corso, P. P.*
Fiordilino, E.*
Cardellini, C.*
Chiodini, G.*
Parello, E.*
Pisciotta, A.*
Title: CO2 degassing at La Solfatara volcano (Phlegrean Fields): Processes affecting d13C and d18O of soil CO2
Title of journal: Geochimica et Cosmochimica Acta
Series/Report no.: 12/74(2010)
Publisher: Elsevier
Issue Date: 2010
DOI: 10.1016/j.gca.2010.03.010
Keywords: isotope exchange
degassing
Abstract: The soil CO2 degassing is affected by processes of isotope exchange and fractionation during transport across the soil, which can deeply modify the pristine isotope composition. This has been observed in the Solfatara volcano, upon a field survey of 110 points, where the CO2 flux was measured, together with temperature, CO2 concentration and oxygen and carbon isotopes within the soil. Furthermore, in some selected sites, the measurements were made at different depths, in order to analyze vertical gradients. Oxygen isotope composition appears controlled by exchange with soil water (either meteoric or fumarolic condensate), due to the fast kinetic of the isotopic equilibrium between CO2 and water. Carbon isotope composition is reliably controlled by transport-driven fractionation, due to the differences in diffusion coefficients between 13C16O2 and 12C16O2. We model the processes affecting CO2 transport across the soil in La Solfatara volcano by means of the Dusty Gas Model applied to a multicomponent system, to evaluate the reciprocal effect on diffusion of involved gases, i.e. 12C16O2, 13C16O2, N2 and O2 in our case. Both numerical and simplified analytical solutions of the equations based on the Dusty Gas Model are given. The modeling results fit well with the experimental data and put in evidence an isotope fractionation of carbon up to about þ4:4& with respect to the source value in the soil gas. This fractionation is independent from the entity of the CO2 flux, and occurs as long as a concentration gradient exists within the soil. On these grounds, the Dusty Gas Model can be applied to whichever diffusing gas mixture to evaluate the extent of chemical and/or isotopic fractionation that can affect ascending gases upon diffusion in any geothermal, volcanic or tectonic area.
Appears in Collections:03.04.08. Instruments and techniques
Papers Published / Papers in press
03.04.06. Hydrothermal systems
03.04.05. Gases

Files in This Item:

File SizeFormatVisibility
2010,FedericoetalSolC13.pdf1.83 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA