Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6046
DC FieldValueLanguage
dc.contributor.authorallNielsen, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMosca, P.; Scienze Fisiche, Università di Napoli, Federico IIen
dc.contributor.authorallGiberti, G.; Scienze Fisiche, Università di Napoli, Federico IIen
dc.contributor.authorallDi Toro, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallHirose, T.; Kochi Institute for Core Sample Research, Japan Agency Marine Earth Science and Technology, Kochi, Japan.en
dc.contributor.authorallShimamoto, T.; Hiroshima University, Dpt. of Earth and Planetary Systems Science, Higashi-Hiroshima, Japan.en
dc.date.accessioned2010-06-21T07:05:24Zen
dc.date.available2010-06-21T07:05:24Zen
dc.date.issued2010-06-01en
dc.identifier.urihttp://hdl.handle.net/2122/6046en
dc.description.abstractIn a recent work on the problem of sliding surfaces under the presence of frictional melt (applying in particular to earthquake fault dynamics), we derived from first principles an expression for the steady state friction compatible with experimental observations. Building on the expressions of heat and mass balance obtained in the above study for this particular case of Stefan problem (phase transition with a migrating boundary) we propose here an extension providing the full time-dependent solution (including the weakening transient after pervasive melting has started, the effect of eventual steps in velocity and the final decelerating phase). A system of coupled equations is derived and solved numerically. The resulting transient friction and wear evolution yield a satisfactory fit (1) with experiments performed under variable sliding velocities (0.9-2 m/s) and different normal stresses (0.5-20 MPa) for various rock types and (2) with estimates of slip weakening obtained from observations on ancient seismogenic faults that host pseudotachylite (solidified melt). The model allows to extrapolate the experimentally observed frictional behavior to large normal stresses representative of the seismogenic Earth crust (up to 200 MPa), high slip rates (up to 9 m/s) and cases where melt extrusion is negligible. Though weakening distance and peak stress vary widely, the net breakdown energy appears to be essentially independent of either slip velocity and normal stress. In addition, the response to earthquake-like slip can be simulated, showing a rapid friction recovery when slip rate drops. We discuss the properties of energy dissipation, transient duration, velocity weakening, restrengthening in the decelerating final slip phase and the implications for earthquake source dynamics.en
dc.description.sponsorshipS.N. and G.D.T. were supported by a European Research Council Starting Grant Project (acronym USEMS) and by a Progetti di Eccellenza Fondazione Cassa di Risparmio di Padova e Rovigo. We are grateful to Nick Beeler (and to an anonymous referee) for their constructive reviews and their help to improve the clarity of the manuscript.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/115 (2010)en
dc.subjectFrictionen
dc.subjectMelten
dc.subjectEarthquake dynamicsen
dc.subjectfault mechanicsen
dc.titleOn the transient behavior of frictional melt during seismic slipen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB10301en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.identifier.doi10.1029/2009JB007020en
dc.relation.references\bibitem[{\textit{Abercrombie and Rice}(2005)}]{abercrombie:2005} Abercrombie, R., and J.~Rice, Can observations of earthquake scaling constrain slip weakening?, \textit{Geophys. J. Int.}, \textit{162}, 406--424, 2005. \bibitem[{\textit{Beeler}(2006)}]{beeler:2006} Beeler, N., Inferring earthquake source properties from laboratory observations and the scope of lab contributions to source physics, in \textit{Earthquakes: Radiated energy and earthquake physics}, \textit{Geophysical Monograph}, vol. 170, edited by R.~Abercombie, A.~McGarr, H.~Kanamori, and G.~D. Toro, American Geophysical Union, 2006. \bibitem[{\textit{Beeler et~al.}(2008)\textit{Beeler, Tullis, and Goldsby}}]{beeler:2008} Beeler, N., T.~Tullis, and D.~Goldsby, Constitutive relationships and physical basis of fault strength due to flash heating, \textit{J. Geophys. Res.}, \textit{113}(B1), B01,401, {doi:10.1029/2007JB004988}, 2008. \bibitem[{\textit{Bizzarri and Cocco}(2006)}]{bizzarri:2006} Bizzarri, A., and M.~Cocco, A thermal pressurization model for the spontaneous dynamic rupture propagation on a three-dimensional fault: 1. methodological approach, \textit{J. Geophys. Res.}, \textit{111}, B05,303, 2006. \bibitem[{\textit{Brantut et~al.}(2008)\textit{Brantut, Schubnel, Rouzaud, Brunet, and Shimamoto}}]{brantut:2008} Brantut, N., A.~Schubnel, J.~Rouzaud, F.~Brunet, and T.~Shimamoto, High velocity frictional properties of a natural clay bearing fault gouge, \textit{J. Geophys. Res.}, \textit{113}, B10,401, {doi:10.1029/2007JB005551}, 2008. \bibitem[{\textit{Brodsky and Kanamori}(2001)}]{brodsky:2001} Brodsky, E., and H.~Kanamori, The elastohydrodynamic lubrication of faults, \textit{J. Geophys. Res.}, \textit{106}({B8}), 16,357--16,374, 2001. \bibitem[{\textit{Brune et~al.}(1969)\textit{Brune, Henyey, and Roy}}]{brune:1969} Brune, J., T.~Henyey, and R.~Roy, Heat flow, stress, and rate of slip along the san andreas fault, california, \textit{J. Geophys. Res.}, \textit{74}, 3821--3827., 1969. \bibitem[{\textit{Brune et~al.}(1993)\textit{Brune, Brown, and Johnson}}]{brune:1993} Brune, J.~N., S.~Brown, and P.~A. Johnson, Rupture mechanism and interface separation in foam ruber models of earthquakes: A possible solution to the heat flow solution and the paradox of large overthrusts, \textit{Tectonophysics}, \textit{218}, 59--67, 1993. \bibitem[{\textit{Cardwell et~al.}(1978)\textit{Cardwell, Chinn, Moore, and Turcotte}}]{cardwell:1978} Cardwell, R., D.~Chinn, G.~Moore, and D.~Turcotte, Frictional heating on a fault zone with finite thickness, \textit{Geophys. J. Roy. Astr. Soc.}, \textit{52}, 525--530, 1978. \bibitem[{\textit{Carslaw and Jaeger}(1959)}]{carslaw:1986} Carslaw, H.~S., and J.~C. Jaeger, \textit{Conduction of Heat in Solids}, Oxford University Press, USA, 1959. \bibitem[{\textit{Cocco and Tinti}(2008)}]{cocco:2008} Cocco, M., and E.~Tinti, Scale dependence in the dynamics of earthquake propagation; evidence from seismological and geological observations, \textit{Earth and Planetary Science Letters}, \textit{273}, 123--131, 2008. \bibitem[{\textit{Crank and Nicolson}(1947)}]{crank:1947} Crank, J., and P.~Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type, \textit{Proc. Camb. Phil. Soc.}, \textit{43}, 50--67, 1947. \bibitem[{\textit{Del~Gaudio et~al.}(2009)\textit{Del~Gaudio, {Di Toro}, Han, Hirose, Nielsen, Shimamoto, and Cavallo}}]{delgaudio:2009} Del~Gaudio, P., G.~{Di Toro}, R.~Han, T.~Hirose, S.~Nielsen, T.~Shimamoto, and A.~Cavallo, Frictional melting of peridotite and seismic slip, \textit{J. Geophys. Res.}, \textit{114}, B06,306, {doi:10.1029/2008JB005990}, 2009. \bibitem[{\textit{{Di~Toro} and Pennacchioni}(2004)}]{ditoro:2004} {Di~Toro}, G., and G.~Pennacchioni, Superheated friction-induced melts in zoned pseudotachylytes within the adamello tonalites (italian southern alps), \textit{J. Struct. Geol.}, \textit{26}, 1783--1801, 2004. \bibitem[{\textit{{Di~Toro} et~al.}(2004)\textit{{Di~Toro}, Goldsby, and Tullis}}]{ditoro:2004b} {Di~Toro}, G., D.~Goldsby, and T.~Tullis, Friction falls towards zero in quartz rock as slip velocity approaches seismic rates, \textit{Nature}, \textit{427}, 436--439, 2004. \bibitem[{\textit{{Di~Toro} et~al.}(2005)\textit{{Di~Toro}, Pennacchioni, and Teza}}]{ditoro:2005} {Di~Toro}, G., G.~Pennacchioni, and G.~Teza, Can {P}seudotachylyte be used to infer earthquake source parameters? {An} example of limitations in the study if exhumed faults, \textit{Tectonophysics}, \textit{402}, 3--20, {doi:10.1016/j.tecto.2004.10.014}, 2005. \bibitem[{\textit{{Di Toro} et~al.}(2006a)\textit{{Di Toro}, Hirose, Nielsen, Pennacchioni, and Shimamoto}}]{ditoro:2006a} {Di Toro}, G., T.~Hirose, S.~Nielsen, G.~Pennacchioni, and T.~Shimamoto, Natural and experimental evidence of melt lubrication of faults during earthquakes, \textit{Science}, \textit{311}, 647--649, {doi:10.1126/science.1121012}, 2006a. \bibitem[{\textit{{Di Toro} et~al.}(2006b)\textit{{Di Toro}, Hirose, Nielsen, and Shimamoto}}]{ditoro:2006b} {Di Toro}, G., T.~Hirose, S.~Nielsen, and T.~Shimamoto, Relating high-velocity rock-friction experiments to coseismic slip in the presence of melts, in \textit{Radiated Energy and the Physics of Earthquake Faulting}, edited by R.~Abercrombie, A.~McGarr, H.~Kanamori, and G.~D. Toro, pp. 121--134, AGU, {doi:10.1029/170GM13}, 2006b. \bibitem[{\textit{Fialko and Khazan}(2005)}]{fialko:2005} Fialko, Y., and Y.~Khazan, Fusion by earthquake fault friction: Stick or slip?, \textit{J. Geophys. Res.}, \textit{110}, {B12}{407}, {doi:10.1029/2005JB003869}, 2005. \bibitem[{\textit{Goldsby and Tullis}(2002)}]{goldsby:2002} Goldsby, D.~L., and T.~E. Tullis, Low frictional strength of quartz rocks at subseismic slip rates, \textit{Geophys. Res. Lett.}, \textit{29}, L01,240, {doi:10.1029/2002GL01240}, 2002. \bibitem[{\textit{Han et~al.}(2007)\textit{Han, Shimamoto, Hirose, Ree, and Ando}}]{han:2007} Han, R., T.~Shimamoto, T.~Hirose, J.-H. Ree, and J.~Ando, Ultralow friction of carbonate faults caused by thermal decomposition, \textit{Science}, \textit{316}, 878--881, {doi:10.1126/science.1139763}, 2007. \bibitem[{\textit{Heaton}(1990)}]{heaton:1990} Heaton, T.~H., Evidence for and implications of self-healing pulses of slip in earthquake rupture, \textit{Phys. Earth Planet. Inter}, \textit{64}, 1--20, corso, 1990. \bibitem[{\textit{Hirose and Shimamoto}(2005)}]{hirose:2005} Hirose, T., and T.~Shimamoto, Growth of molten zone as a mechanicsm of slip weakening of simulated faults in gabbro during frictional melting, \textit{J. Geophys. Res.}, \textit{110}, {B05}{202}, {doi:10.1029/2004JB003207}, 2005. \bibitem[{\textit{Lachenbruch}(1980)}]{lachenbruch:1980} Lachenbruch, A., Frictional heating, fluid pressure, and the resistance to fault motion, \textit{J. Geophys. Res.}, \textit{85}, 6097--6112, 1980. \bibitem[{\textit{Landau}(1950)}]{landau:1950} Landau, H., Heat conduction in a melting solid, \textit{Quart. Appl. Math.}, \textit{8}, 81--94, 1950. \bibitem[{\textit{Lu et~al.}(2007)\textit{Lu, Lapusta, and Rosakis}}]{Lu:2007} Lu, X., N.~Lapusta, and A.~J. Rosakis, Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes, \textit{Proc. Natl. Acad. Sci. USA}, \textit{104}, 18,931--18,936, 2007. \bibitem[{\textit{Melosh}(1996)}]{melosh:1996} Melosh, J., Dynamic weakening of faults by acoustic fluidization, \textit{Nature}, \textit{397}, 601--606, 1996. \bibitem[{\textit{Nielsen and Madariaga}(2003)}]{nielsen:2003} Nielsen, S., and R.~Madariaga, On the self-healing fracture mode, \textit{Bull. Seismol. Soc. Am.}, \textit{93}(6), 2375--2388, {doi:10.1785/0120020090}, 2003. \bibitem[{\textit{Nielsen et~al.}(2008)\textit{Nielsen, {Di Toro}, Hirose, and Shimamoto}}]{nielsen:2008a} Nielsen, S., G.~{Di Toro}, T.~Hirose, and T.~Shimamoto, Frictional melt and seismic slip, \textit{J. Geophys. Res.}, \textit{113}, B01,308, {doi:10.1029/2007JB005122}, 2008. \bibitem[{\textit{Nielsen et~al.}(2009)\textit{Nielsen, {D}i {T}oro, and Griffith}}]{nielsen:2009b} Nielsen, S., G.~{D}i {T}oro, and W.~A. Griffith, Friction and roughness of a melting rock surface, \textit{Geophys. J. Int. (under review)}, 2009. \bibitem[{\textit{Nielsen and Carlson}(2000)}]{nielsen:2000c} Nielsen, S.~B., and J.~M. Carlson, Rupture pulse characterization: Self-healing, self-similar, expanding solutions in a continuum model of fault dynamics, \textit{Bull. Seismol. Soc. Am.}, \textit{90}(6), 1480--1497, {doi:10.1785/0120000021}, 2000. \bibitem[{\textit{Niemeijer et~al.}(2009)}]{niemeijer:2009} Niemeijer, A., et~al., A new state-of-the-art tool to investigate rock friction under extreme slip velocities and accelerations: Shiva, in \textit{Eos, Trans., AGU Fall Meeting Suppl.}, vol. {\bf 90}(52), American Geophysical Union, abs. T23C-1950, 2009. \bibitem[{\textit{Peachman and Rachford}(1955)}]{peachman:1955} Peachman, D.~W., and H.~H. Rachford, The numerical solution of parabolic and elliptic differential equations, \textit{J. Soc. Industrial Appl. Math.}, \textit{3}, 1--28, 1955. \bibitem[{\textit{Rempel and Weaver}(2008)}]{rempel:2008} Rempel, A., and S.~Weaver, A model for flash weakening by asperity melting during high-speed earthquake slip, \textit{Journal of Geophysical Research}, \textit{113}(B11), B11,308, {doi:10.1029/2008JB005649}, 2008. \bibitem[{\textit{Rice}(2006)}]{rice:2006} Rice, J.~R., Heating and weakening of faults during earthquake slip, \textit{J. Geophys. Res.}, \textit{111}, {B05}{311}, {doi:10.1029/2005JB004006}, 2006. \bibitem[{\textit{Shand}(1916)}]{shand:1916} Shand, The pseudotachylyte of parijs (orange free state) and its relation to trapp-shotten gneiss and flinty crush rock, \textit{Quart. J. Geol. Soc. London,}, \textit{72}, 198--221, 1916. \bibitem[{\textit{Shimamoto and Tsutsumi}(1994)}]{shimamoto:1994} Shimamoto, T., and A.~Tsutsumi, A new rotary-shear high-velocity frictional testing machine: Its basic design and scope of research, \textit{Struct. Geol.}, \textit{39}, 65--78, (in Japanese with English abstract), 1994. \bibitem[{\textit{Scholz}(1990)}]{scholz1990} Scholz, C.~H., \textit{The mechanics of earthquakes and faulting}, Cambridge University Press, 1990. \bibitem[{\textit{Sibson}(1975)}]{sibson:1975} Sibson, R., Generation of pseudotachylyte by ancient seismic faulting, \textit{Geophys. J. R. Astron. Soc.}, \textit{43}, 775--794, 1975. \bibitem[{\textit{Sirono et~al.}(2006)\textit{Sirono, Satomi, and Watanabe}}]{sirono:2006} Sirono, S., K.~Satomi, and S.~Watanabe, Numerical simulations of frictional melting: Small dependence of shear stress drop on viscosity parameters, \textit{J. Geophys. Res.}, \textit{111}, {B06}{309}, {doi:10.1029/2005JB003858}, 2006. \bibitem[{\textit{Snoke et~al.}(1998)\textit{Snoke, Tullis, and Todd}}]{snoke:1998} Snoke, A., J.~Tullis, and V.~Todd, \textit{Fault Related Rocks. A photographic Atlas}, Princeton, 1998. \bibitem[{\textit{Sone and Shimamoto}(2009)}]{sone:2009} Sone, H., and T.~Shimamoto, Frictional resistance of faults during accelerating and decelerating earthquake slip, \textit{Nature Geoscience}, {doi:10.1038/NGEO637}, 2009. \bibitem[{\textit{Spray}(1987)}]{spray:1987} Spray, J., Artificial generation of pseudotachylyte using friction welding apparatus: simulation of melting on a fault plane, \textit{J. Struct. Geol.}, \textit{9}, 49--60, 1987. \bibitem[{\textit{Spray}(1992)}]{spray:1992} Spray, J., A physical basis for the frictional melting of some rock forming minerals, \textit{Tectonophysics}, \textit{204}, 205--221, 1992. \bibitem[{\textit{Spray}(2005)}]{spray:2005} Spray, J.~G., Evidence for melt lubrication during large earthquakes, \textit{Geophys. Res. Lett.}, \textit{32}, L07,301, {doi:10.1029/2004GL022293}, 2005. \bibitem[{\textit{Spudich}(1998)}]{spudich:1998} Spudich, P., Use of fault striations and dislocation models to infer tectonic shear stress during the 1995 {H}yogo-ken {N}anbu ({K}obe), {J}apan, earthquake, \textit{Bull. Seismol. Soc. Am.}, \textit{88}, 413--427, 1998. \bibitem[{\textit{Swanson}(1992)}]{swanson:1992} Swanson, M., Fault structure, wear mechanisms and rupture processes in pseudotachylyte generation, \textit{Tectonophysics}, \textit{204}, 223--242, 1992. \bibitem[{\textit{Tinti et~al.}(2005)\textit{Tinti, Spudich, and Cocco}}]{tinti:2005} Tinti, E., P.~Spudich, and M.~Cocco, Earthquake fracture energy inferred from kinematic rupture models on extended faults, \textit{J. Geophys. Res.}, \textit{110}, B12,303, {doi:10.1029/2005JB003644}, 2005. \bibitem[{\textit{Tinti et~al.}(2009)\textit{Tinti, Cocco, Fukuyama, and Piatanesi}}]{tinti:2009} Tinti, E., M.~Cocco, E.~Fukuyama, and A.~Piatanesi, Dependence of slip weakening distance (d (sub c) ) on final slip during dynamic rupture of earthquakes, \textit{Geophysical Journal International, vol. 177, no. 3, pp.1205-1220, Jun 2009}, \textit{177}, 1205--1220, 2009. \bibitem[{\textit{Tsutsumi and Shimamoto}(1997)}]{tsutsumi:1997} Tsutsumi, A., and T.~Shimamoto, High-velocity frictional properties of gabbro, \textit{Geophys. Res. Lett.}, \textit{24}, pp.699--702, 1997. \bibitem[{\textit{Ueda et~al.}(2008)\textit{Ueda, Obata, Di~Toro, Kanagawa, and Ozawa}}]{ueda:2008} Ueda, T., M.~Obata, G.~Di~Toro, K.~Kanagawa, and K.~Ozawa, Mantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel-lherzolite facies, \textit{Geology}, \textit{36(8)}, 607--610, 2008. \bibitem[{\textit{Whittington et~al.}(2009)\textit{Whittington, Hofmeister, and Nabelek}}]{whittington:2009} Whittington, A.~G., A.~M. Hofmeister, and P.~I. Nabelek, Temperature-dependent thermal diffusivity of the {E}arth's crust and implications for magmatism, \textit{Nature}, \textit{458}, 319--321, {doi:10.1038/nature07818}, 2009. \bibitem[{\textit{Zheng and Rice}(1998)}]{zheng:1998} Zheng, G., and J.~Rice, Conditions under which velocity weakening friction allows a self-healing versus a cracklike mode of rupture, \textit{Bull. Seismol. Soc. Am.}, \textit{88}(6), 1466--1483, 1998.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorNielsen, S.en
dc.contributor.authorMosca, P.en
dc.contributor.authorGiberti, G.en
dc.contributor.authorDi Toro, G.en
dc.contributor.authorHirose, T.en
dc.contributor.authorShimamoto, T.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentScienze Fisiche, Università di Napoli, Federico IIen
dc.contributor.departmentScienze Fisiche, Università di Napoli, Federico IIen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentKochi Institute for Core Sample Research, Japan Agency Marine Earth Science and Technology, Kochi, Japan.en
dc.contributor.departmentHiroshima University, Dpt. of Earth and Planetary Systems Science, Higashi-Hiroshima, Japan.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDurham University, Durham, UK-
crisitem.author.deptScienze Fisiche, Università di Napoli, Federico II-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptKochi Institute for Core Sample Research, Japan Agency Marine Earth Science and Technology, Kochi, Japan.-
crisitem.author.deptDepartment of Earth and Planetary Systems Science, University of Hiroshima, Hiroshima, Japan.-
crisitem.author.orcid0000-0002-9214-2932-
crisitem.author.orcid0000-0002-6618-3474-
crisitem.author.orcid0000-0002-5397-3346-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
670464_1_merged_1268571671.pdfMain Paper + figures893.98 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

31
checked on Feb 10, 2021

Page view(s) 50

157
checked on Apr 24, 2024

Download(s) 50

260
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric