Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5911
DC FieldValueLanguage
dc.contributor.authorallRomano, Fabrizio; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2010-02-16T09:22:26Zen
dc.date.available2010-02-16T09:22:26Zen
dc.date.issued2009-06-09en
dc.identifier.urihttp://hdl.handle.net/2122/5911en
dc.description.abstractSubduction zones are the favorite places to generate tsunamigenic earthquakes, where friction between oceanic and continental plates causes the occurrence of a strong seismicity. The topics and the methodologies discussed in this thesis are focussed to the understanding of the rupture process of the seismic sources of great earthquakes that generate tsunamis. The tsunamigenesis is controlled by several kinematical characteristic of the parent earthquake, as the focal mechanism, the depth of the rupture, the slip distribution along the fault area and by the mechanical properties of the source zone. Each of these factors plays a fundamental role in the tsunami generation. Therefore, inferring the source parameters of tsunamigenic earthquakes is crucial to understand the generation of the consequent tsunami and so to mitigate the risk along the coasts. The typical way to proceed when we want to gather information regarding the source process is to have recourse to the inversion of geophysical data that are available. Tsunami data, moreover, are useful to constrain the portion of the fault area that extends offshore, generally close to the trench that, on the contrary, other kinds of data are not able to constrain. In this thesis I have discussed the rupture process of some recent tsunamigenic events, as inferred by means of an inverse method. I have presented the 2003 Tokachi-Oki (Japan) earthquake (Mw 8.1). In this study the slip distribution on the fault has been inferred by inverting tsunami waveform, GPS, and bottom-pressure data. The joint inversion of tsunami and geodetic data has revealed a much better constrain for the slip distribution on the fault rather than the separate inversions of single datasets. Then we have studied the earthquake occurred on 2007 in southern Sumatra (Mw 8.4). By inverting several tsunami waveforms, both in the near and in the far field, we have determined the slip distribution and the mean rupture velocity along the causative fault. Since the largest patch of slip was concentrated on the deepest part of the fault, this is the likely reason for the small tsunami waves that followed the earthquake, pointing out how much the depth of the rupture plays a crucial role in controlling the tsunamigenesis. Finally, we have presented a new rupture model for the great 2004 Sumatra earthquake (Mw 9.2). We have performed the joint inversion of tsunami waveform, GPS and satellite altimetry data, to infer the slip distribution, the slip direction, and the rupture velocity on the fault. Furthermore, in this work we have presented a novel method to estimate, in a self-consistent way, the average rigidity of the source zone. The estimation of the source zone rigidity is important since it may play a significant role in the tsunami generation and, particularly for slow earthquakes, a low rigidity value is sometimes necessary to explain how a relatively low seismic moment earthquake may generate significant tsunamis; this latter point may be relevant for explaining the mechanics of the tsunami earthquakes, one of the open issues in present day seismology. The investigation of these tsunamigenic earthquakes has underlined the importance to use a joint inversion of different geophysical data to determine the rupture characteristics. The results shown here have important implications for the implementation of new tsunami warning systems – particularly in the near-field – the improvement of the current ones, and furthermore for the planning of the inundation maps for tsunami-hazard assessment along the coastal area.en
dc.description.sponsorshipUniversità degli studi di Bolognaen
dc.language.isoEnglishen
dc.subjectTsunamien
dc.subjectRupture Processen
dc.subjectJoint inversionen
dc.titleTHE RUPTURE PROCESS OF RECENT TSUNAMIGENIC EARTHQUAKES BY GEOPHYSICAL DATA INVERSIONen
dc.typethesisen
dc.description.statusPublisheden
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processesen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.03. Inverse methodsen
dc.relation.referencesAblain M., J. Dorandeu, P. Y. Le Traon, and A. Sladen (2006), High resolution altimetry reveals new characteristics of the December 2004 Indian Ocean tsunami, Geophys. Res. Lett., 33, L21602, doi:10.1029/2006GL027533. Ammon C. J., C. Ji, H.K. Thio, D. Robinson, S. Ni, V. Hjorleifsdottir, H. Kanamori, T. Lay, S. Das, D. Helmberger, G. Ichinose, J. Polet and D. Wald (2005), Rupture process of the 2004 Sumatra-Andaman earthquake, Science, 308, 1133-1139, doi:10.1126/science.1112260. Amoruso A., L. Crescentini, and C. Fidani (2004), Effects of crustal layering on source parameter inversion from coseismic geodetic data, Geophys. J. Int., 159, 353-364, doi:10.1111/j.1365-246X.2004.02389.x. Baba T., K. Hirata, T. Hori, and H. Sakaguchia (2006), Offshore geodetic data conducive to the estimation of the afterslip distribution following the 2003 Tokachi-oki earthquake, Earth Planet. Sci. Lett. 241, 281 – 292, doi:10.1016/j.epsl.2005.10.019. Banerjee P., F.F. Pollitz and R. Bürgmann (2005), The size and duration of the Sumatra-Andaman earthquake from far-field static offsets, Science, 308, 1769-1772, doi:10.1126/science.1113746. Banerjee P., F.F. Pollitz, B. Nagarajan, and R. Bürgmann (2007), Coseismic Slip Distributions of the 26 December 2004 Sumatra–Andaman and 28 March 2005 Nias Earthquakes from GPS Static Offsets, Bull. Seismol. Soc. Am., 97(1A), S86–S102, doi:10.1785/0120050609. Bilek S.L. (2007), Using Earthquake Source Durations along the Sumatra–Andaman Subduction System to Examine Fault-Zone Variations, Bull. Seismol. Soc. Am., 97(1A), S62–S70, doi: 10.1785/0120050622. Bilek S.L., and T. Lay (1998), Variation of Interplate Fault Zone Properties with Depth in the Japan Subduction Zone, Science, 281, 1175-1178, doi:10.1126/science.281.5380.1175. Bilek S.L., and T. Lay (1999), Rigidity variations with depth along interplate megathrust faults in subduction zones, Nature, 400, 443-446, doi:10.1038/22739. Bilek S.L., K. Satake, and K. Sieh (2007), Introduction to the special issue on the 2004 Sumatra-Andaman earthquake and the Indian Ocean tsunami, Bull. Seismol. Soc. Am., 97, S1 – S5, doi:10.1785/0120050633. Bilham R. (2005), A flying start, then a slow slip, Science, 308, 1126-1127, doi:10.1126/science.1113363. Bird P. (2003), An updated digital model of plate boundaries, Geochem. Geophys. Geosystems, 4, 1027, doi:10.1029/2001GC000252. Borrero J.C., K. Sieh, M. Chlieh, and C. E. Synolakis (2006), Tsunami inundation modeling for western Sumatra, Proc. Nat. Acad. Sci., 103, 19673-19677. Boschi E., E. Casarotti, R. Devoti, D. Melini, G. Pietrantonio and F. Riguzzi (2006), Coseismic deformation induced by the Sumatra earthquake, J. Geodyn., 42, 52-62. Boschi L., A. Piersanti and G. Spada (2000), Global postseismic deformation: deep earthquakes, J. Geophys. Res., 105, 631-652, doi:10.1029/1999JB900278. British Oceanographic Data Center (2003). The Centenary Edition of the GEBCO Digital Atlas [CD-ROM], Liverpool, UK. Bryant E. (2008), Tsunami (The Underrated Hazard), Springer. Catherine J.K., V.K. Gahalaut, and V.K. Sahu (2005), Constraints on rupture of the December 26, 2004, Sumatra earthquake from far-field GPS observations, Earth Plan. Sc. Lett., 237, 673-679, doi:10.1016/j.epsl.2005.07.012. Chlieh M. et al. (2007), Coseismic slip and afterslip of the Great (Mw9.15) Sumatra-Andaman Earthquake of 2004, Bull. Seism. Soc. Am., 97, S152–S173, doi:10.1785/0120050631. DART Buoy, http://nctr.pmel.noaa.gov/Dart/index.html Dow J.M., R.E. Neilan, and G. Gendt (2005), The International GPS Service (IGS): Celebrating the 10th Anniversary and Looking to the Next Decade, Adv. Space Res. 36 vol. 36, no. 3, pp. 320-326, doi:10.1016/j.asr.2005.05.125. Dragani W.C., E.E. D’Onofrio, W. Grismeyera, and M.E. Fiore (2006), Tide gauge observations of the Indian ocean tsunami, December 26, 2004, in Buenos Aires coastal waters, Argentina, Cont. Shelf. Res., 26, 1543-1550, doi:10.1016/j.csr.2006.03.002. Dziewonski A. M., and D. L. Anderson (1981), Preliminary reference Earth model (PREM), Phys. Earth Planet. Interiors, 25, 297–356, doi:10.1016/0031-9201(81)90046-7. Fujii Y., and K. Satake (2006), Source of the July 2006 West Java tsunami estimated from tide gauge records, Geophys. Res. Lett., 33, L24317, doi:10.1029/2006GL028049. Fujii Y., and K. Satake (2007), Tsunami Source of the 2004 Sumatra–Andaman Earthquake Inferred from Tide Gauge and Satellite Data, Bull. Seismol. Soc. Am., 97, S192–S207, doi:10.1785/0120050613. Fujii Y., and K. Satake (2008), Tsunami Sources of the November 2006 and January 2007 Great Kuril Earthquakes, Bull. Seismol. Soc. Am., 98(3), 1559-1571, doi:10.1785/0120070221 Gahalaut V.K., B. Nagarajan, J.K. Catherine, and S. Kumar (2006), Constraints on 2004 Sumatra–Andaman earthquake rupture from GPS measurements in Andaman–Nicobar Islands, Earth Plan. Sc. Lett., 242, 365-374, doi:10.1016/j.epsl.2005.11.051. Geist E.L. (1999), Local tsunamis and earthquake source parameters, Advances in Geophysics, 39, 117-209. Geist E.L., and S. L. Bilek (2001), Effect of depth-dependent shear modulus on tsunami generation along subduction zones, Geophys. Res. Lett., 28, 1315-1318. Geist E.L., V.V. Titov, D. Arcas, F.P. Pollitz, and S.L. Bilek (2007), Implications of the December 26, 2004 Sumatra-Andaman earthquake on tsunami forecast and assessment models for great subduction zone earthquakes, Bull. Seismol. Soc. Am., 97(1A), S249-S270, doi:10.1785/0120050619. GGCI. Geodesy and Geodinamics Center of Indonesia. GLOSS. Global Sea Level Observing System, JCOMM/WMO/IOC UNESCO. Gower J. F. (2005), Jason 1 detects December 26, 2004 tsunami, Eos. Transactions American Geophysical Union, 86, 37-38. Grilli S. T., M. Ioualalen, J. Asavanant, F. Shi, J. T. Kirby, and P. Watts (2007), Source constraints and model simulation of the December 26, 2004 Indian Ocean tsunami, J. Waterw. Port Coastal Ocean Eng., 133(6), 414-428, doi: 10.1061/(ASCE)0733-950X(2007)133:6(414). GSI (Geodetic Survey Institute), http://mekira.gsi.go.jp/ENGLISH/index.html Gu Y. J. (2006), Preface to special issue, Surv. Geophys., 27, 601 – 602, doi:10.1007/s10712-006-9014-3. Gutenberg B., and C. F. Richter (1944). Frequency of earthquakes in California, Bull. Seism. Soc. Am. 34, 185-188. Hartzell S. H. (1989), Comparison of seismic waveform inversion results for the rupture history of a finite fault: Application to the 1986 North Palm Springs, California, earthquake, J. Geophys. Res., 94, 7515–7534. Hashimoto M., N. Choosakul, M. Hashizume, S. Takemoto, H. Takiguchi, Y. Fukuda, and K. Fujimori (2006), Crustal deformations associated with the great Sumatra-Andaman earthquake deduced from countinuous GPS observation, Earth Planets Space, 58, 203-209. Hayashi Y. (2008), Extracting the 2004 Indian Ocean tsunami signals from sea surface height data observed by satellite altimetry, J. Geophys. Res., 113, C01001, doi:10.1029/2007JC004177. HDRTN, Hydrographic Department, Royal Thai Navy, Thailand. Hébert H., A. Sladen, and F. Schindelé (2007), Numerical Modeling of the Great 2004 Indian Ocean Tsunami: Focus on the Mascarene Islands, Bull. Seismol. Soc. Am., 97(1A), S 08–S222, doi: 10.1785/0120050611. Heinrich P., A. Piatanesi, and H. Hébert (2001), Numerical modelling of tsunami generation and propagation from submarine slumps: the 1998 Papua New Guinea event, Geophys. J. Int., 145, 97-111. Hirata K., E. L. Geist, K. Satake, Y. Tanioka, and S. Yamaki (2003), Slip distribution of the 1952 Tokachi-Oki earthquake (M8.1) along the Kuril Trench deduced from tsunami waveform inversion, J. Geophys. Res., 108(B4), 2196, doi:10.1029/2002JB001976. Hirata K., Y. Tanioka, K. Satake, S. Yamaki, and E. L. Geist (2004), The tsunami source area of the 2003 Tokachi-oki earthquake estimated from tsunami travel times and its relationship to the 1952 Tokachi-oki earthquake, Earth Planets Space 56, 367–372. Hirata K., K. Satake, Y. Tanioka, T. Kuragano, Y. Hasegawa, Y. Hayashi and N. Hamada (2006), The 2004 Indian ocean tsunami: tsunami source model from satellite altimetry, Earth Planets Space, 58, 195-201. Hirata K., K. Satake, Y.Tanioka and Y.Hasegawa (2007), A Review on recent studies of tsunamis in the southernmost Kuril Trench, Proceedings of International Workshop on Tsunami - Wave Propagation, Theory, Numerical Approach and Data Inversion, Keio Univ. Hoechner A., A. Y. Babeyko, S. V. Sobolev (2008), Enhanced GPS inversion technique applied to the 2004 Sumatra earthquake and tsunami, Geophys. Res. Lett., 35, L08310, doi:10.1029/2007GL033133. Honda R., S. Aoi, N. Morikawa, H. Sekiguchi, T. Kunugi, and H. Fujiwara (2004), Ground motion and rupture process of the 2003 Tokachi-oki earthquake obtained by strong-motion data of K-NET and KiK-net, Earth Earth Planets Space, 56, 317–322 Horikawa H. (2004), Fault geometry and slip distribution of the 2003 Tokachi-oki earthquake as deduced from teleseismic body waves, Earth Planets Space 56, 1011–1017. Ichinose G., P. Somerville, H.K. Thio, R. Graves, and D. O’Connell (2007), Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami, and geodetic data, J. Geophys. Res., 112, B07306, doi:10.1029/2006JB004728. IGS, International GNSS Service, http://igscb.jpl.nasa.gov/ (last accessed March 2009). Ioualalen M., J. Asavanant, N. Kaewbanjak, S.T. Grilli, J.T. Kirby, and P. Watts (2007) Modeling the 26 December 2004 Indian Ocean tsunami: Case study of impact in Thailand, J. Geophys. Res., 112, C07024, doi:10.1029/2006JC003850. Ito Y., H. Matsubayashi, H. Kimura, T. Matsumoto, Y. Asano, and S. Sekiguchi (2004), Spatial distribution for moment tensor solutions of the 2003 Tokachi-oki earthquake (MJMA = 8.0) and aftershocks, Earth Planets Space 56, 301-306. Jade S., M. Ananda, P. Kumar, and S. Banerjee (2005), Co-seismic and post-seismic displacements in Andaman and Nicobar islands from GPS measurements, Curr. Sci., 88, 1980–1984. JAMSTEC (Japan Agency for Marine-earth Science and Technology), http://www.jamstec.go.jp/scdc/top_e.html Ji C., Wald D.J., and D.V. Helmberger (2002), Source description of the 1999 Hector Mine, California earthquake; Part I: wavelet domain inversion theory and resolution analysis, Bull. Seismol. Soc. Am., 92, 4, 1192-1207,doi:10.1785/0120000916. Johnson D.S., C.R. Argon, L.A. McGeoch, and C. Schevon (1989), Optimization by Simulated Annealing: an Experimental evaluation ; Part I, Graph Partitioning, Operations Research, 37, pp. 365-892. Joseph A., J.T. Odametey, E.K. Nkebi, A. Pereira, R.G. Prabhudesai, P. Mehra, A.B. Rabinovich, V. Kumar, S. Prabhudesai and P. Woodworth (2006), The 26 December 2004 Sumatra tsunami recorded on the coast of West Africa, Afr. J. Mar. Sci., 28(3&4), 705–712. Kajiura K. (1981), Tsunami energy in relation to parameters of the earthquake fault model, Bull. Earthquake Res. Ins., 56, 415–440. Kanamori H. (1972), Mechanism of Tsunami Earthquakes, Phys. Earth Planet. Inter., 6, 246 – 259. Katsumata K., N. Wada, and M. Kasahara (2003), Newly imaged shape of the deep seismic zone within the subducting Pacific plate beneath the Hokkaido corner, Japan-Kurile arc-arc junction, J. Geophys. Res. 108, doi:10.1029/2002JB002175. Kennett B.L.N., and P.R. Cummins (2005), The relationship of the seismic source and subduction zone structure for the 2004 December 26 Sumatra-Andaman earthquake, Earth Plan. Sc. Lett., 239, 1-8, doi:10.1016/j.epsl.2005.08.015. Kirkpatrick S.C., D. Gelatt, and M. P. Vecchi (1983), Optimization by simulated annealing, Science, 220, 671-680. Konca A. O., V. Hjorleifsdottir, T.-R. A. Song, J.-P. Avouac, D. V. Helmberger, C. Ji, K. Sieh, R. Briggs, and A. Meltzner (2007), Rupture kinematics of the 2005 Mw 8.6 Nias – Simeulue earthquake from the joint inversion of seismic and geodetic data, Bull. Seismol. Soc. Am., 97, 307 – 322, doi:10.1785/0120050632. Koketsu K., K. Hikima, S. Miyazaki, and S. Ide (2004), Joint inversion of strong motion and geodetic data for the source process of the 2003 Tokachi-oki, Hokkaido, earthquake, Earth Planets Space, 56, 329 – 334. Lay T. et al. (2005), The great Sumatra-Andaman earthquake of 26 December 2004, Science, 308, 1127-1133, doi:10.1126/science.1112250. Lay T., and T. C. Wallace (1995), Modern Global Seismology, 521 pp., Academic Press, San Diego, California. Lorito S., F. Romano, A. Piatanesi, and E. Boschi (2008a), Source process of the September 12, 2007, Mw 8.4 southern Sumatra earthquake from tsunami tide gauge record inversion, Geophys. Res. Lett., 35, L02310, doi:10.1029/2007GL032661. Lorito S., A. Piatanesi, and A. Lomax (2008b), Rupture Process of the 18 April 1906 California Earthquake from Near-Field Tsunami Waveform Inversion, Bull. Seismol. Soc. Am., 98(2), 832–845, doi: 10.1785/0120060412. Lorito S., A. Piatanesi, V. Cannelli, F. Romano, and D. Melini (2009), Kinematics and Source Zone Properties of the 2004 Sumatra-Andaman Earthquake and Tsunami: Nonlinear Joint Inversion of Tide-Gage, Satellite Altimetry and GPS data, J. Geophys. Res. (now accepted with revision). Mader C. L. (2001). Numerical modeling of water waves, Los Alamos series in Basic and Applied Sciences, 206 p. Marks K.M., and W.H.F. Smith (2006), An evaluation of publicly available bathymetry grids, Mar. Geophys. Res., 27, 19-34. McCloskey J., S. S. Nalbant, and S. Steacy (2005), Indonesian earthquake Earthquake risk from co-seismic stress, Nature, 434, 291 – 291. McCloskey J., A. Antonioli, A. Piatanesi, K. Sieh, S. Steacy, S.S. Nalbant, M. Cocco, C. Giunchi, J.D. Huang, and P. Dunlop (2007a), Near-field propagation of tsunamis from megathrust earthquakes, Geophys. Res. Lett., 34, L14316, doi:10.1029/2007GL030494. McCloskey J., A. Antonioli, A. Piatanesi, K. Sieh, S. Steacy, S.S. Nalbant, M. Cocco, C. Giunchi, J.D. Huang, and P. Dunlop (2007b), Tsunami Threat in the Indian Ocean from a Future Megathrust Earthquake West of Sumatra, Earth Planet. Sci. Lett., in press. Megna A., S. Barba, S. Santini, and M. Dragoni (2008), Effects of geological complexities on coseismic displacement: hints from 2D numerical modelling, Terra Nova, 20(3), 173-179, doi:10.1111/j.1365-3121.2008.00800.x. Menke W. (1989), Geophysical Data Analysis: Discrete Inverse Theory, rev. ed., Academic, San Diego, Calif. Menke W., H. Abend, D. Bach, K. Newman, and V. Levin (2006), Review of the source characteristics of the Great Sumatra–Andaman Islands earthquake of 2004, Surv Geophys, 27, 603–613, doi: 10.1007/s10712-006-9013-4. Merrifield M.A. et al. (2005), Tide gauge observations of the Indian Ocean tsunami, December 26, 2004, Geophys. Res. Lett., 32, L09603, doi:10.1029/2005GL022610. Metropolis N., M. N. Rosenbluth, A. W. Rosenbluth, A. H. Teller, and E. Teller (1953), Equation of state calculations by fast compute machines, J. Chem. Phys., 21, 1087-1092. Mikada H., K. Mitsuzawa, H. Sugioka, T. Baba, K. Hirata, H. Matsumoto, S. Morita, R. Otsuka, T. Watanabe, E. Araki, and K. Suyehiro (2006), New discoveries in dynamics of an M8 earthquake-Phenomena and their implications at the 2003 Tokachi Earthquake using a long term monitoring cabled observatory, Tectonophysics, 426, 95 – 105, doi:10.1016/j.tecto.2006.02.021 Nagarajan B., I. Suresh, D. Sundar, R. Sharma, A.K. Lal, S. Neetu, S.S.C. Shenoi, S.R Shetye, and D. Shankar (2006), The great tsunami of 26 December 2004: a description based on tide-gauge data from the Indian subcontinent and surrounding areas, Earth Planet Space, 58, 211–215. Nalbant S. S., S. Steacy, K. Sieh, D. Natawidjaja, and J. McCloskey (2005), Seismology: Earthquake risk on the Sunda trench, Nature, 435, 756-757, doi:10.1038/nature435756a. Natawidjaja D. H., K. Sieh, M. Chlieh, J. Galetzka, B. W. Suwargadi, H. Cheng, R. L. Edwards, J.-P. Avouac, and S. N. Ward (2006), Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls, J. Geophys. Res., 111, B06403, doi:10.1029/2005JB004025. NIO. National Institute of Oceanography, Goa, India. Nishimura S., M. Ando, and K. Tadokoro (2005), An application of numerical simulation techniques to improve the resolution of offshore fault kinematics using seafloor geodetic methods, Physics of the Earth and Planetary Interiors 151, 181–193, doi:10.1016/j.pepi.2005.03.002 Obura D. (2006), Impacts of the 26 December 2004 tsunami in Eastern Africa, Ocean Coast. Manage., 49, 873–888, doi:10.1016/j.ocecoaman.2006.08.004. Okada Y. (1992), Internal deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 82, 1018-1040. Okal E. A., A. Piatanesi, and P. Heinrich (1999), Tsunami detection by satellite altimetry, J. Geophys. Res., 104, 599-615. Pacheco J. F., and L. R. Sykes (1992), Seismic moment catalog of large shallow earthquakes, 1900 to 1989, Bull. Seismol. Soc. Am., 82, 1306 –1349, 1992. Piatanesi A., and S. Lorito (2007), Rupture Process of the 2004 Sumatra–Andaman Earthquake from Tsunami Waveform Inversion, Bull. Seismol. Soc. Am., 97(1A), S223-S231, doi: 10.1785/0120050627. Piersanti A., G. Spada, R. Sabadini, and M. Bonafede (1995), Global post-seismic deformation, Geophys. J.Int., 120, 544–566, doi:10.1111/j.1365-246X.1995.tb01838.x. Pietrzak J., A. Socquet, D. Ham, W. Simon, C. Vigny, R. J. Labeur, E. Schrama, G. Stelling, and D. Vatvani (2007), Defining the source region of the Indian Ocean Tsunami from GPS, altimeters, tide gauges and tsunami models, Earth Planet. Sci. Lett., 261, 49-64, doi:10.1016/j.epsl.2007.06.002. PO.DAAC. Physical Oceanography Distributed Active Archive Center, Jet Propulsion Laboratory Caltech/NASA, USA. Rabinovich A. B. (1997), Spectral analysis of tsunami waves: Separation of source and topography effects, J. Geophys. Res., 102, 12663-12676. Rabinovich A.B., R.E. Thomson, and F.E. Stephenson (2006), The Sumatra tsunami of 26 December 2004 as observed in the North Pacific and North Atlantic oceans, Surv. Geophys., 27, 647–677, doi:10.1007/s10712-006-9000-9. Rabinovich A.B., and R.E. Thomson (2007), The 26 December 2004 Sumatra Tsunami: Analysis of Tide Gauge Data from the World Ocean Part 1. Indian Ocean and South Africa, Pure Appl. Geophys., 164, 261–308, doi:10.1007/s00024-006-0164-5. Reid H.F. 1910, The Mechanics of the Earthquake, The California Earthquake of April 18, 1906, Report of the State Investigation Commission, Vol.2, Carnegie Institution of Washington, Washington, D.C. Rhie J., D. Dreger, R. Bürgmann, and B. Romanowicz (2007), Slip of the 2004 Sumatra–Andaman Earthquake from Joint Inversion of Long-Period Global Seismic Waveforms and GPS Static Offsets, Bull. Seismol. Soc. Am., 97(1A), S115-S127, doi: 10.1785/0120050620. Rothman D. (1985), Nonlinear inversion statistical mechanics, and residual statics corrections, Geophysiscs, 50, 2784-2796Satake K., and Y. Rothman D. (1986), Automatic estimation of large residual statics corrections, Geophysics, 51, 332-346. Sambridge M., J. Braun and H. McQueen (1995), Geophysical parameterization and interpolation of irregular data using natural neighbours, Geophys. J.Int., 122,
837-857, doi:10.1111/j.1365-246X.1995.tb06841.x Sambridge M., and Mosegaard K. (2002), Monte Carlo Methods in Geophysical Inverse Problems, Reviews of Geophysics, 20, 1009, doi:10.1029/2000RG000089. Satake K. (1993), Depth Distribution of Coseismic Slip Along the Nankai Trough, Japan, From Joint Inversion of Geodetic and Tsunami Data, J. Geophys. Res., 98, B3, 4553-4565. Satake K. , E.A. Okal, and J. C. Borrero (2007), Tsunami and its Hazard in the Indian and Pacific Oceans: Introduction, Pure Appl. Geophys., 154(2-3), 249-259, doi: 10.1007/s00024-006-0172-5. Sen M., and P.L. Stoffa (1991), Nonlinear one-dimensional seismic waveform inversion using simulated annealing, Geophysics, 56, 1624-1638. Sen M., and P. L. Stoffa (1995), Global Optimization Methods in Geophysical Inversion, Adv. Explor. Geophys., vol. 4, Elsevier Sci., New York. Seno T. and K. Hirata (2007), Did the 2004 Sumatra–Andaman Earthquake Involve a Component of Tsunami Earthquakes? Bull. Seismol. Soc. Am., 97(1A), S296 - S306, doi: 10.1785/0120050615. Shapiro N.M., M.H. Ritzwoller, and E.R. Engdahl (2008) Structural context of the great Sumatra-Andaman Islands earthquake, Geophys. Res. Lett., 35, L05301, doi:10.1029/2008GL033381. Sindhu B, I. Suresh, A.S. Unnikrishnan, N.V. Bhatkar, S. Neetu, and G.S. Michael (2007), Improved bathymetric datasets for the shallow water regions in the Indian Ocean, J. Earth Syst. Sci., 116(3), 261-274, doi: 10.1007/s12040-007-0025-3. Sladen A., and H. Hébert (2008), On the use of satellite altimetry to infer the earthquake rupture, characteristics: application to the 2004 Sumatra event, Geophys. J.Int., 172, 707–714, doi: 10.1111/j.1365-246X.2007.03669.x Smith W. H. F., and P. Wessel (1990), Gridding with continuous curvature splines in tension, Geophysics, 55, 293−305. Smith W.H.F., R. Scharroo, V. V. Titov, D. Arcas , and B. K. Arbic (2005), Satellite Altimeters Measure Tsunami, Oceanography, 18, 11-13. Soldati G., A. Piersanti, A., and E. Boschi (1998), Global postseismic gravity changes of a viscoelastic Earth, J. Geophys. Res., 103, 29,867-29,885, doi:10.1029/98JB02793. Spudich P., and D.P. Miller (1990), Seismic site effects and the spatial interpolation of earthquake seismograms: results using aftershocks of the 1986 North Palm Springs, California earthquake, Bull. Seismol. Soc. Am., 80, 1504-1532. Stein S., and E. A. Okal (2005), Speed and size of the Sumatra earthquake, Nature, 434, 581-582, doi:10.1038/434581a. Stern R. J., Subduction zones, Reviews of Geophysics, 40, doi:10.1029/2001RG000108. Subarya C., M. Chlieh, L. Prawirodirdjo, J-P. Avouac, Y. Boch, K. Sieh, A.J. Meltzmer, D.H. Natawidjaja and R. McCaffrey (2006), Plate-boundary deformation associated with the great Sumatra-Andaman earthquake, Nature, 440, 46-51, doi:10.1038/nature04522. SuGAr, Sumatran GPS Array of Caltech’s Tectonics Observatory, http://www.tectonics.caltech.edu/sumatra/data.html Satake K., and Y. Tanioka (1999), Sources of Tsunami and Tsunamigenic Earthquakes in Subduction Zones, Pure Appl. Geophys., 154, 467-483 Tanioka Y., K. Hirata, R. Hino, and T. Kanazawa (2004a), Slip distribution of the 2003 Tokachi-oki earthquake estimated from tsunami waveform inversion, Earth Planets Space 56, 373 – 376. Tanioka Y. et al. (2004b), Tsunami run-up heights of the 2003 Tokachi-oki earthquake, Earth Planets Space 56, 359-365. Tanioka Y., E.L. Geist, and N.T. Puspito (2006a), Preface to special issue ‘‘The 2004 Great Sumatra Earthquake and Tsunami’’, Earth Planets Space 58(2), 111. Tanioka Y., Yudhicara, T. Kususose, S. Kathiroli, Y. Nishimura, S.I. Iwasaki, and K. Satake (2006b), Rupture process of the 2004 great Sumatra-Andaman earthquake estimated from tsunami waveforms, Earth Planet Space, 58, 203-209. Tarantola A. (1987), Inverse Problem Theory, Elsevier Sci., New York. Thomson R.E., A.B. Rabinovich, and M.V. Krassovski (2007), Double jeopardy: Concurrent arrival of the 2004 Sumatra tsunami and storm-generated waves on the Atlantic coast of the United States and Canada, Geophys. Res. Lett., 34, L15607, doi:10.1029/2007GL030685. Tinti S., and R. Tonini (2005), Analytical evolution of tsunamis induced by near-shore earthquakes on a constant-slope ocean, J. Fluid Mech., 535, 33–64, doi:10.1017/S0022112005004532. Titov V., A.B. Rabinovich, H.O. Mofjeld, R.E. Thomson, and F.I. González (2005), The Global Reach of the 26 December 2004 Sumatra Tsunami, Science, 309, 2045-2048, doi:10.1126/science/1114576. Tsuji Y., Y. Namegaya, H. Matsumoto, S.-I. Iwasaki, W. Kambua, M. Sriwichai and V. Meesuk (2006), The 2004 Indian tsunami in Thailand: tsunami height and tide-gauge records, Earth Planet Space, 58, 223-232. UHSLC, University of Hawaii Sea Level Center, USA. United Kingdom Hydrographic Office (2005). Catalogue of Admiralty Charts and Publications, 2005 Edition, Taunton, Somerset, United Kingdom. Vigny C., W.J.F. Simons, S. Abu, R. Bamphenyu, C. Satirapod, N. Choosakul, C. Subaraya, A. Soquet, K. Omar, H.Z. Abidin, and B.A.C. Ambrosius (2005), GPS in SE Asia provides unforeseen insights on the 2004 megathrust earthquake Insight into the 2004 Sumatra-Andaman earthquake from GPS measurements in Southeast Asia, Nature, 436, 201-206, doi:10.1038/nature03937. Wald D. J., and T. H. Heaton (1994), Spatial and temporal distribution of slip for the 1992 Landers, California earthquake, Bull. Seismol. Soc. Am., 84, 668-691. Wald D. J., and R. W. Graves (2001), Resolution analysis of finite fault source inversion using one- and three-dimensional Green’s functions 2. Combining seismic and geodetic data, J. Geophys. Res., 106, 8767–8788. Wang R., F. L. Lorenzo, and F. Roth (2003). Computation of deformation induced by earthquakes in multi-layered elastic crust — FORTRAN programs EDGRN/EDCMP, Comput. Geosci., 29, 195–207. Wang Z., and D. Zhao (2005), Seismic imaging of the entire arc of Tohoku and Hokkaido in Japan using P-wave, S-wave and sP depth-phase data, Physics of the Earth and Planetary Interiors 152, 144-162, doi:10.1016/j.pepi.2005.06.010. Wang R., F.L. Martin, and F. Roth (2006), PSGRN/PSCMP - a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Computers and Geosciences, 32, 527-541, doi:10.1016/j.cageo. 2005.08.006. Ward S. N. (2001), “Tsunamis” in The Encyclopedia of Physical Science and Technology, ed. R. A. Meyers, Academic Press. Watanabe T., H. Takahashi, M. Ichiyanagi, M. Okayama, M. Takada, R. Otsuka, K. Hirata, S. Morita, M. Kasahara, and H. Mikada (2006), Seismological monitoring on the 2003 Tokachi-oki earthquake, derived from off Kushiro permanent cabled OBSs and land-based observations, Tectonophysics, 426, 107-118, doi:10.1016/j.tecto.2006.02.016. Wells D. L., and K. J. Coppersmith (1994), New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am., 84, 974-1002. Wesnousky S. G. (1994), The Gutenberg-Richter or Characteristic Earthquake Distribution, Which Is It?, Bull. Seismol. Soc. Am., 84, 1940-1959. Wessel P., and W. H. F. Smith (1998), New, improved version of the Generic Mapping Tools Released, EOS Trans. AGU, 79, 579. Yagi Y. (2004), Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data, Earth Planets Space, Vol 56, 311-316. Yamanaka Y., and M. Kikuchi (2003), Source process of the recurrent Tokachi-oki earthquake on September 26, 2003, inferred from teleseismic body waves, Earth Planets Space, 55, e21–e24. Yamanaka H., K. Motoki, K. Etoh, M. Murayama, and N. Komaba (2004), Observation of aftershocks of the 2003 Tokachi-Oki earthquake for estimation of local site effects, Earth Planets Space, 56, 335-340. Zhao S., R.D. Müller, Y. Takahashi, and Y. Kaneda (2004), 3-D finite-element modelling of deformation and stress associated with faulting: effect of inhomogeneous crustal structures, Geophys. J. Int., 157, 629-644, doi:10.1111/j.1365-246X.2004.02200.x.en
dc.type.methodPhDen
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.fulltextopenen
dc.contributor.authorRomano, Fabrizioen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypethesis-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0003-2725-3596-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Theses
Files in This Item:
File Description SizeFormat
Tesi_Fabrizio_Romano3.pdfFabrizio Romano PhD Thesis8.86 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

306
checked on Apr 24, 2024

Download(s) 10

669
checked on Apr 24, 2024

Google ScholarTM

Check