Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5908
DC FieldValueLanguage
dc.contributor.authorallDi Luccio, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallVentura, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDi Giovambattista, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallPiscini, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallCinti, F. R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2010-02-10T09:31:56Zen
dc.date.available2010-02-10T09:31:56Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/5908en
dc.description.abstractOn April 6 2009, a Mw=6.3 earthquake occurred in the central Apennines (Italy) damaging L’Aquila city and the surrounding country. We relocate the October 2008-April 6 2009 foreshocks and about 2000 aftershocks occurred between April 6 and April 30 2009, by applying a double-difference technique and determine the stress field from focal mechanisms. The events concentrate in the upper 15 km of the crust. Three main NW-SE to NNW-SSE striking, 30°-45° and 80°-90° dipping faults activate during the seismic sequence. Among these, a normal fault and a thrust were re-activated with dip-slip movements in response to NE-SW extension. The structural maturity of the seismogenic fault system is lower than that displayed by other systems in southern Apennines, because of the lower strain rate of the central sector of the chain with respect to the southern one. VP/VS increases progressively from October 2008 to the April 6 2009 mainshock occurrence along a NW-SE strike due to an increment in pore fluid pressure along the fault planes. Pore pressure diffusion controls the space-time evolution of aftershocks. A hydraulic diffusivity of 80 m2/s and a seismogenic permeability of about 10-12 m2 suggest the involvement of gas-rich (CO2) fluids within a highly fractured medium. Suprahydrostatic, high fluid pressure (about 200 MPa at 10 km of depth) within overpressurized traps, bounded by pre-existing structural and/or lithological discontinuities at the lower-upper crust boundary, are required to activate the April 2009 sequence. Traps are the storage zone of CO2-rich fluids uprising from the underlying, about 20 km deep, metasomatized mantle wedge. These traps easily occur in extensional regimes like in the axial sector of Apennines, but are difficult to form in strike-slip regimes, where sub-vertical faults may cross the entire crust. In the Apennines, fluids may activate faults responsible for earthquakes up to Mw=5-6. Deep fluids more than tectonic stress may control the seismotectogenesis of accretionary wedges.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Research -Solid Earthen
dc.relation.ispartofseries/115(2010)en
dc.subjectL'Aquila 2009 earthquakeen
dc.subjectfault kinematics and reactivationen
dc.titleNormal faults and thrusts re-activated by deep fluids: the 6 April 2009 Mw 6.3 L’Aquila earthquake, central Italy.en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB06315en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneousen
dc.relation.referencesAgosta, F., M. Prasad, and A. Aydin (2007), Physical properties of carbonate fault rocks, Fucino basin (central italy): implications for fault seal in platform carbonates, Geofluids, 7, 19–32. Alaniz-Alvares S., and G. Tolson (2000), Assessing Fault Reactivation with the ReActiva Program. Journal of Geoscience Education, 48, 651-657. Atzori, S., I. Hunstad, M. Chini, S. Salvi, C. Tolomei, C. Bignami, S. Stramondo, E. Trasatti, A. Antonioli, and E. Boschi (2009), Finite fault inversion of DInSAR coseismic displacement of the 2009 L'Aquila earthquake (central Italy), Geophys. Res. Lett., 36, L15305, doi:10.1029/2009GL039293. Bagh, S., L. Chiaraluce, P. De Gori, M. Moretti, A. Govoni, C. Chiarabba, P. Di Bartolomeo, and M. Romanelli (2007), Background seismicity in the Central Apennines of Italy: The Abruzzo region case study, Tectonophysics, 444, 1-4, 80-92. Biagi, P.F., L. Castellana, T. Maggipinto, D. Loiacono, L. Schiavulli, T. Ligonzo, M. Fiore, E. Suciu, and A. Ermini (2009), A pre seismic radio anomaly revealed in the area where the Abruzzo earthquake (M=6.3) occurred on 6 April 2009, Nat. Hazards Earth Syst. Sci., 9, 1551–1556. Blumetti, A. M., M. Di Filippo, P. Zaffiro, P. Marsan, and B. Toro (2002), Seismic hazard of the city of L’Aquila (Abruzzo - Central Italy): new data from geological, morphotectonic and gravity prospecting analysis, Studi Geologici Camerti, 1, 7–18. Calderoni G., R. Di Giovambattista, P. Burrato, and G. Ventura (2009), A seismic sequence from Northern Apennines (Italy) provides new insight on the role of fluids in the active tectonics of accretionary wedges, Earth and Planetary Science Letters, doi:10.1016/j.epsl.2009.02.015. Castello, B., G. Selvaggi, C. Chiarabba, and A. Amato (2005), CSI Catalogo della sismicità italiana 1981–2002, versione 1.0. INGV-CNT, Roma Chen, C.H., W.H. Wang, and T.L. Teng (2001), 3D velocity structure around the source area of the 1999 Chi-Chi, Taiwan, earthquake: Before and after the mainshock, Bull. Seismol. Soc. Am., 91, 5, 1013-1027. Chiarabba, C., L. Jovane, and R. Di Stefano (2005), A new view of Italian seismicity using 20 years of instrumental recordings, Tectonophysics, 395, doi:10.1016/j.tecto.2004.09.013. Chiarabba, C., A. Amato, M. Anselmi, P. Baccheschi, I. Bianchi, M. Cattaneo, G. Cecere, L. Chiaraluce, L., M.G. Ciaccio, P. De Gori, G. De Luca, M. Di Bona, R. Di Stefano, L. Faenza, A. Govoni, I. Improta, F. P. Lucente, A. Marchetti, L. Margheriti, F. Mele, A. Michelini, G. Monachesi, M. Moretti, M. Pastori, N. Piana Agostinetti, D. Piccinini, P. Roselli, D. Seccia, and L. Valoroso (2009), The 2009 L’Aquila (central Italy) MW 6.3 earthquake: Main shock and aftershocks, Geophys. Res. Lett., 36, L18308, doi:10.1029/2009GL039627. Chiodini, G., F. Frondini, C. Cardellini, F. Parello, and L. Peruzzi (2000), Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: The case of central Apennines, Italy, J. Geophys. Res., 105, 8423– 8434. Chiodini, G., C. Cardellini, A. Amato, E. Boschi, S. Caliro, F. Frondini, and G. Ventura (2004), Carbon dioxide Earth degassing and seismogenesis in central and southern Italy, Geophys. Res. Lett., 31, L07615, doi:10.1029/2004GL019480. Di Luzio E., G. Mele, M. M. Tiberti, G. P. Cavinato, and M. Parotto (2009), Moho deepening and shallow upper crustal delamination beneath the central Apennines, Earth Planet. Sci. Lett., doi:10.1016/j.epsl.2008.09.018. Di Stefano, R., C. Chiarabba, F. P. Lucente, and A. Amato (1999), Crustal and uppermost mantle structure in Italy from the inversion of P-wave arrival times: geodynamic implications, Geophys. J. Int., 139, 483–498. Doglioni C. (1991), A proposal of kinematic modelling for W-dipping subductions - Possible applications to the Tyrrhenian - Apennines system, Terra Nova, 3, 4, 423-434. Doglioni, C. (1995), Geological remarks on the relationships between extension and convergent geodynamic settings, Tectonophysics 252, 253–268. Eberhart-Phillips, D., and A. J. Michael (1993), Three-dimensional velocity structure and seismicity in the Parkfield region, central California, J. Geophys. Res., 98, 15,737-15,758. Eberhart-Phillips, D., and A. J. Michael (1998), Seismotectonics of the Loma Prieta, California, region determined from three-dimensional Vp, Vp/Vs, and seismicity, J. Geophys. Res.,103, B9, 21099-21120. Emergeo Working Group (2010), Evidence for surface rupture associated with the Mw 6.3 L’Aquila earthquake sequence of April 2009 (central Italy), Terra Nova, 1, 22, doi:10.1111/j.1365-3121.2009.00915.x. Frezzotti M.L., A. Peccerillo, and G. Panza (2009), Carbonate metasomatism and CO2 lithosphere-asthenosphere degassing beneath the Western Mediterranean: An integrated model arising from petrological and geophysical data, Chemical Geology, 262, 108-120. Galadini, F., and P. Galli (2000), Active tectonics in the central Apennines (Italy) -input data for seismic hazard assessment, Nat. Haz., 22, 225–270. Gentile G.F, G. Bressan, L. Burlini, and R. De Franco (2000), Three dimensional Vp and Vp/Vs models of the upper crust in the Friuli area (northeastern Italy), Geophys. J. Int., 141, 457-478. Ghisetti, F., and L. Vezzani (1999), Depth and modes of Pliocene–Pleistocene crustal extension of the Apennines (Italy), Terra Nova, 11, 67–72. Ghisetti, F., and L. Vezzani (2002), Normal faulting, transcrustal permeability and seismogenesis in the Apennines (Italy), Tectonophysics, 348, 155 – 168. Goto, T., Y. Wada, N. Oshiman, and N. Sumitomo (2005), Resistivity structure of a seismic gap along the Atotsugawa Fault, Japan, Phys. Earth Planet. Int., 148, 55-72 Graeber, F. M., and G. Asch (1999), Three-dimensional models of P wave velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data, J. Geophys. Res., B104-9, 20,237-20,256. Hunstad, I., G. Selvaggi, N. D'Agostino, P. England, P. Clarke, and M. Pierozzi (2003), Geodetic strain in peninsular Italy between 1875 and 2001, Geophys. Res. Lett., 30(4), 1181, doi:10.1029/2002GL016447 Husen, S., and E. Kissling (2001), Postseismic fluid flow after the large subduction earthquake of Antofagasta, Chile, Geology, 29, 847–850. Iscan, A.G., M. V. Kök, and A. S. Bagcı (2006), Estimation of permeability and rock mechanical properties of limestone reservoir rocks under stress conditions by strain gauge, J. Pet. Sci. Eng., 53, 13–24. Klein, F. (2000), HYPOINVERSE-2000, a FORTRAN program to solve for earthquake locations and magnitudes, U.S. Geol. Surv. Open File Rept., 02-171. Lavecchia G., P. Boncio, and N. Creati (2003), A lithospheric scale seismogenic thrust in central Italy, Journal of Geodynamics, 36, 79-94. Lucia, J (1999), Carbonate Reservoir Characterization: An Integrated Approach, 2nd edition, Springer-Verlag Berlin, 336 p. Malinverno A., and W. B. F. Ryan (1986), Extension in the Tyrrhenian sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere, Tectonics, 5, 227-245. Mantovani E., D. Babbucci, C. Tamburelli, and M. Viti (2009), A review on the driving mechanism of the Tyrrhenian-Apennines system: Implications for the present seismotectonic setting in the Central-Northern Apennines, Tectonophysics, 476, 22-40. Mele, G., A. Rovelli, D. Seber, and M. Barazangi (1996), Lateral variations of Pn propagation in Italy: Evidence for a high attenuation zone beneath the Apennines, Geophys. Res. Lett., 7/23, 709-712. Michael, A.J. (1987), Determination of stress from slip data: faults and folds, J. Geophys. Res., 89, 11517–11526. Milano, G., G. Ventura, and R. Di Giovambattista (2002), Seismic evidence of longitudinal extension in the Southern Apennines chain (Italy): The 1997–1998 Sannio-Matese seismic sequence, Geophys. Res. Lett., 29(20), 2004, doi:10.1029/2002GL015188. Miller, S. A., C. Collettini, L. Chiaraluce, M. Cocco, M. Barchi, M., and B. J. P. Kaus (2004), Aftershocks driven by a high-pressure CO2 source at depth, Nature, 427, doi:10.1038/nature2251. Montone, P., M. T. Mariucci, S. Pondrelli, and A. Amato (2004), An improved stress map for Italy and surrounding regions (central Mediterranean), J. Geophys. Res., 109, doi:10.1029/2003JB002703. Moos, D., M. D. Zoback (1983), In situ studies of velocity in fractured crystalline rocks, J. Geophys. Res., 88, 2345– 2358. Moretti M., P. De Gori, and C. Chiarabba (2009), Earthquake relocation and three-dimensional Vp and Vp/Vs models along the low angle Alto Tiberina Fault (Central Italy): evidence for fluid overpressure, Geophys. J. Int., 176, 833–846. Morris, A., D. A. Ferrill, and D. B. Henderson (1996), Slip-tendency analysis and fault reactivation, Geology, 24, 275–278. Nadeau, R., M. Antolik, P. Johnson, W. Foxall, and T. V. McEvilly (1994), Seismological studies at Parkfield III: microearthquake clusters in the study of fault-zone dynamics, Bull. Seism. Soc. Am., 83, 247 –263. Noir, J., E. Jacques, S. Bekri, P. M. Adler, P. Tapponier, and G. C. P. King (1997), Fluid flow triggered migration of events in the 1989 Dobi earthquake sequence of Central Afar, Geophys. Res. Lett., 24, 2335-2338. Nostro, C., M. Cocco, and M. E. Belardinelli (1997), Static stress changes in extensional regimes: an application to Southern Apennines, Italy, Bull. Seism. Soc. Am., 87, 234-248. Patacca, E., P. Scandone, E. Di Luzio, G. Cavinato, and M. Parotto (2008), Structural architecture of the central Apennines: interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide, Tectonics, 27, 3, doi:10.1029/2005TC001917. Peacock, D. C. P. (2002), Propagation, interaction and linkage in normal fault systems, Earth-Science Rev., 58, 1-2, 121-142. Pino, N. A., and F. Di Luccio (2009), Source complexity of the 6 April 2009 L'Aquila (Central Italy) earthquake and its strongest aftershock revealed by elementary seismological analysis, Geophys. Res. Lett., doi:10.1029/2009GL041331. Pizzi, A., and F. Galadini (2009), Pre-existing cross-structures and active fault segmentation in the northern-central Apennines (Italy), Tectonophysics, 476, doi:10.1016/j.tecto.2009.03.018. Roeloffs, E. (1996), Poroelastic techniques in the study of earthquake related hydrologic phenomena, Adv. Geophys., 37, 136– 195. Saccorotti, G., G. Ventura, and G. Vilardo (2002), Seismic swarms related to diffusive processes: The case of Somma-Vesuvius volcano, Italy, Geophysics, 67(1), 199–203. Satolli, S., and F. Calamita (2008), Differences and similarities between the central and the southern Apennines (Italy): Examining the Gran Sasso versus the Matese-Frosolone salients using paleomagnetic, geological, and structural data, J. Geophys. Res., 113, B10101, doi:10.1029/2008JB005699. Shapiro, S.A., E. Huenges, and G. Borm (1997), Estimating the crust permeability from fluid injection-induced seismic emission at the KTB site, Geophys. J. Int., 131, F15–F18. Shapiro, S.A., R. Patzig, E. Rothert, and J. Rindschwentner (2003), Triggering of seismicity by pore pressure perturbations: permeability related signatures of the phenomenon, Pure Appl. Geophys., 160, 1051–1066. Sibson R.H. (2000), Fluid involvement in normal faulting, Journal of Geodynamics, 29, 469-499. Stern, R. J. (2002), Subduction zones, Rev. Geophys., 40(4), 1012, doi:10.1029/2001RG000108. Talwani P., L. Chen, and K. Gahalaut (2007), Seismogenic permeability, ks, J. Geophys. Res., 112, B07309, doi:10.1029/2006JB004665. Tertulliani, A., A. Rossi, L. Cucci, and M. Vecchi (2009), L’Aquila (Central Italy) earthquakes: the predecessors of the April 6, 2009 event, Seism. Res. Lett., 80, 6, 972-977, doi: 10.1785/gssrl.80.6.972. Ventura, G., F. R. Cinti, F. Di Luccio, and N. A. Pino (2007), Mantle wedge dynamics vs crustal seismicity in the Apennines (Italy), Geochem. Geophys. Geosys., 8, doi:10.1029/2006GC001421. Wadati, K. (1933), On the travel time of earthquake waves. Part II, Geophys. Mag., 7, 101–111. Waldhauser, F., and W. L. Ellsworth (2000), A double-difference earthquake location algorithm: method and application to the Northern Hayward Fault, California, Bull. Seismol. Soc. Am., 90, 1353–1368. Wessel, P., and W. H. F. Smith (1991), Free software helps map and display data, Eos Trans. AGU, 72, 441, 1991. Yin, Z.M., and G. Ranalli (1992), Critical stress difference, fault orientation and slip direction in anisotropic rocks under non-Andersonian stress systems, J. Struct. Geol., 14 237–244. Zhang, X., and D. J. Sanderson (1996a), Numerical modelling of the effects of fault slip on fluid flow around extensional faults, J. Struct. Geol., 18, 109-122. Zhang, X., and D. J. Sanderson (1996b), Effects of stress on the two-dimensional permeability tensor of natural fracture networks, Geophys. J. Int., vol. 125, issue 3, pp. 912-924. Zhang, T., M. Zhang, B. Bai, X. Wang, and L. Li (2008), Origin and accumulation of carbon dioxide in the Huanghua depression, Bohai Bay Basin, Chin. AAPG Bull. 92, 341–358. Zhao, D., H. Kanamori, H. Negishi, and D. Wiens (1996), Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter?, Science, 274, 1891–1894. Zhao, D., and H. Negishi (1998), The 1995 Kobe earthquake: seismic image of the source zone and its implications for the rupture nucleation, J. Geophys. Res., 103, 9967–9986.en
dc.description.obiettivoSpecifico1.1. TTC - Monitoraggio sismico del territorio nazionaleen
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorDi Luccio, F.en
dc.contributor.authorVentura, G.en
dc.contributor.authorDi Giovambattista, R.en
dc.contributor.authorPiscini, A.en
dc.contributor.authorCinti, F. R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-9924-3736-
crisitem.author.orcid0000-0001-9388-9985-
crisitem.author.orcid0000-0001-5622-1396-
crisitem.author.orcid0000-0001-5545-3611-
crisitem.author.orcid0000-0003-1068-3223-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
687804_2_merged_1264678443.pdfaccepted for publication3.48 MBAdobe PDFView/Open
Show simple item record

Page view(s) 20

422
checked on Apr 17, 2024

Download(s) 10

557
checked on Apr 17, 2024

Google ScholarTM

Check