Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5866
DC FieldValueLanguage
dc.contributor.authorallRinaldi, A. P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallVandemeulebrouck, LGIT, Université de Savoie, Le Bourget du Lac Cedexen
dc.contributor.authorallTodesco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2010-01-25T14:22:36Zen
dc.date.available2010-01-25T14:22:36Zen
dc.date.issued2009-09en
dc.identifier.urihttp://hdl.handle.net/2122/5866en
dc.description.abstractMonitoring of geophysical and geochemical observ¬ables at the surface plays a main role in the under¬standing of—and the hazard evaluation of— active volcanoes. Measurable changes in these parameters should occur when a volcano approches eruptive con¬ditions. Hydrothermal activity is commonly studied as an efficient carrier of signals from the magmatic system. As the magmatic system evolves, the amount, temperature, and composition of magmatic fluids that feed the hydrothermal system change, in turn affecting the parameters that are monitored at the surface. Modeling of hydrothermal circulation, as shown in the past, may cause measurable gravity changes and ground deformation. In this work, we extend our previous studies and increase the number of observable parameters to include gas temperature, the rate of diffuse degassing, the extent of the degassing area, and electrical conductivity. The possibility of nonmagmatic disturbance needs to be carefully addressed to ensure a proper estimate of volcanic hazard.en
dc.description.sponsorshipDPC INGV Project V1 - Unresten
dc.language.isoEnglishen
dc.relation.ispartofTOUGH Symposium 2009en
dc.subjecthydrothermal systemen
dc.subjectvolcanic unresten
dc.subjectelectrical resistivityen
dc.subjectmodelingen
dc.titleMODELING OF HYDROTHERMAL FLUID CIRCULATION AS A TOOL FOR VOLCANIC HAZARD ASSESSMENTen
dc.typeExtended abstracten
dc.description.statusPublisheden
dc.identifier.URLhttp://esd.lbl.gov/newsandevents/events/toughsymposium09/en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneousen
dc.description.ConferenceLocationLawrence Berkeley National Laboratory, Berkeley, CAen
dc.relation.referencesAizawa, K., Y. Ogawa, and T. Ishido, Groundwater flow and hydrothermal systems within volcanic edifices: Delineation by electric self-potential and magnetotellurics, J. Geophys. Res., 114(B01208), 2009. Bianco, F., E. Del Pezzo, G. Saccorotti, and G. Ventura, The role of hydrothermal fluids in triggering the July August 2000 seismic swarm at Campi Flegrei, Italy: Evidence from seismol¬ogical and mesostructural data, J. Volcanol. Geotherm. Res., 133, 229– 246, 2004. Bonafede, M., Hot fluid migration: an efficient source of ground deformation: application to the 1982-1985 crisis at Campi Flegrei – Italy, J. Volcanol. Geotherm. Res., 48, 187-198, 1991. Chiodini, G., M. Todesco, S. Caliro, C. Del Gaudio, G. Macedonio, and M. Russo, Magma degassing as a trigger of bradyseismic events: the case of Phlegrean Fields (Italy), Geophys. Res. Lett., 30(8), 1434-1437, 2003. Finizola, A., A. Revil, E. Rizzo, S. Piscitelli, T. Ricci, J. Morin, B. Angeletti, L. Mocochain, and F. Sortino, Hydrogeological insights at Strom¬boli volcano (Italy) from geoelectrical, tempera¬ture and CO2 soil degassing investigations, Geophys. Res. Lett., 33(L17304), 2006. Hurwitz, S., L. B. Christiansen, and P. A. Hsieh, Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simu¬lations, J. Geophys. Res, 112(B02206), 2007. Hutnak, M., S. Hurwitz, S. E. Ingebritsen and P. A. Hsieh, Numerical models of caldera deforma¬tion: Effects of multiphase and multicomponent hydrothermal fluid flow, J. Geophys. Res., 114(B04411), 2009. Jardani, A., and A. Revil, Stochastic joint inversion of temperature and self-potential data, Geophys. J. Int., 2009. Pruess, K., C. Oldenburg, and G. Moridis, TOUGH2 User’s Guide, Version 2.0, Report LBNL-43134, Lawrence Berkeley National Laboratory, Berke¬ley, Calif., 1999. Revil, A., L. M. Cathles III, S. Losh, and J. A. Nunn, Electrical conductivity in shaly sands with geo¬physical application, J. Geophys. Res.., 103(B10), 23925–23936, 1998. Revil, A., D. Hermitte, E. Spangenberg, and J. J. Cochemé, Electrical properties of zeolitized volcaniclastic materials, J. Geophys. Res., 107(B8), 2002. Revil, A., et al., Inner structure of La Fossa di Vulcano (Vulcano Island, southern Tyrrhenian Sea, Italy) revealed by high-resolution electric resistivity tomography coupled with self-potential, temperature, and CO2 diffuse degassing measurements, J. Geophys. Res., 113(B07207), 2008. Rinaldi, A. P., M. Todesco, and M. Bonafede, Hydrothermal instability and ground displace¬ment at the Campi Flegrei caldera, Phys. Earth Planet. Int., 2009a. Rinaldi, A. P., et al., Heterogeneous hydrothermal system, in preparation, 2009b. Roberts, J. J., Electrical properties of microporus rock as a function of saturation and temperature, J. App. Phys., 91(3), 2002. Todesco, M., Signals from the Campi Flegrei hydro¬thermal system: Role of a ‘‘magmatic’’ source of fluids, J. Geophys. Res., 114(B05201), 2009. Todesco, M., and G. Berrino, Modeling hydrothermal fluid circulation and gravity signals at the Phlegraean Fields caldera, Earth Planet. Sci. Lett., 240, 328– 338, 2005. Todesco, M., G. Chiodini, and G. Macedonio, Monitoring and modelling fluid emission at La Solfatara (Phlegrean Fields, Italy). An interdisci¬plinarity approach to the study of disffuse degassing, J. Volcanol. Geotherm. Res., 125, 57-79, 2003. Todesco, M., J. Rutqvist, G. Chiodini, K. Pruess, and C. M. Oldenburg, Modeling of recent volcanic episodes at Phlegrean Fields (Italy): geochemical variations and ground deformations, Geother¬mics, 33, 531-547, 2004. Vaughan, P. J., K. S. Udell, and M. J. Wilt, The effects of steam injection on the electrical conductivity of an unconsolidated sand saturated with a salt solution, J. Geophys. Res., 98(B1), 509-518, 1993. Waxman, M. H., and L. J. M. Smits, Electrical conductivities in oil-bearing shaly sands, Soc. Pet. Eng. J., 8, 107-122, 1968. Zlotnicki, J., and Y. Nishida, Review on morphologi¬cal insights of self-potential anomalies on volca¬noes, Surv. Geophys., 24, 291–338, 2003.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.obiettivoSpecifico4.3. TTC - Scenari di pericolosità vulcanicaen
dc.description.fulltextopenen
dc.contributor.authorRinaldi, A. P.en
dc.contributor.authorVandemeulebrouck, LGIT, Université de Savoie, Le Bourget du Lac Cedexen
dc.contributor.authorTodesco, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypeExtended abstract-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0002-5939-0985-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Conference materials
Files in This Item:
File Description SizeFormat
Rinaldi_et_al2009.pdf870.4 kBAdobe PDFView/Open
Show simple item record

Page view(s)

138
checked on Apr 17, 2024

Download(s) 50

195
checked on Apr 17, 2024

Google ScholarTM

Check