Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5827
DC FieldValueLanguage
dc.contributor.authorallFrondini, F.; Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell’Università, I-06123 Perugia, Italyen
dc.contributor.authorallCaliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCardellini, C.; Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell’Università, I-06123 Perugia, Italyen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMorgantini, N.; ARPA Umbria, Via Pievaiola, San Sisto, I-06132 Perugia, Italyen
dc.date.accessioned2010-01-22T18:10:43Zen
dc.date.available2010-01-22T18:10:43Zen
dc.date.issued2009en
dc.identifier.urihttp://hdl.handle.net/2122/5827en
dc.description.abstractThe quaternary volcanic complex of Mount Amiata is located in southern Tuscany (Italy) and represents the most recent manifestation of the Tuscan Magmatic Province. The region is characterised by a large thermal anomaly and by the presence of numerous CO2-rich gas emissions and geothermal features, mainly located at the periphery of the volcanic complex. Two geothermal systems are located, at increasing depths, in the carbonate and metamorphic formations beneath the volcanic complex. The shallow volcanic aquifer is separated from the deep geothermal systems by a low permeability unit (Ligurian Unit). A measured CO2 discharge through soils of 1.8 109 mol a 1 shows that large amounts of CO2 move from the deep reservoir to the surface. A large range in d13CTDIC ( 21.07 to +3.65) characterises the waters circulating in the aquifers of the region and the mass and isotopic balance of TDIC allows distinguishing a discharge of 0.3 109 mol a 1 of deeply sourced CO2 in spring waters. The total natural CO2 discharge (2.1 109 mol a 1) is slightly less than minimum CO2 output estimated by an indirect method (2.8 109 mol a 1), but present-day release of 5.8 109 mol a 1 CO2 from deep geothermal wells may have reduced natural CO2 discharge. The heat transported by groundwater, computed considering the increase in temperature from the infiltration area to the discharge from springs, is of the same order of magnitude, or higher, than the regional conductive heat flow (>200 mWm 2) and reaches extremely high values (up to 2700mWm 2) in the north-eastern part of the study area. Heat transfer occurs mainly by conductive heating in the volcanic aquifer and by uprising gas and vapor along fault zones and in those areas where low permeability cover is lacking. The comparison of CO2 flux, heat flow and geological setting shows that near surface geology and hydrogeological setting play a central role in determining CO2 degassing and heat transfer patterns.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofApplied Geochemistryen
dc.relation.ispartofseries/24 (2009)en
dc.subjectCarbon dioxide degassingen
dc.subjectMonte Amiataen
dc.titleCarbon dioxide degassing and thermal energy release in the Monte Amiata volcanic-geothermal area (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber860–875en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1016/j.apgeochem.2009.01.010en
dc.relation.referencesAccaino, F., Tinivella, U., Rossi, G., Nicolich, R., 2005. Geofluid evidence from analysis of deep crustal seismic data (Southern Tuscany, Italy). J. Volcanol. Geotherm. Res. 148, 46–59. Arisi Rota, F., Fichera, R., 1985. Magnetic interpretation connected to Geomagnetic provinces: the Italian case history. In: 47th Meeting European Association of Exploration Geophysicists Proc. ARPAT – Agenzia Regionale per la Protezione Ambientale della Toscana, 2006. Monitoraggio delle aree geotermiche – Rapporto finale anno 2005. Baldi, P., Bellani, S., Ceccarelli, A., Fiordelisi, A., Squarci, P., Taffi, L., 1994. Correlazione tra le anomalie termiche ed altri elementi geofisici e strutturali della Toscana Meridionale. Studi Geol. Camerti 1 (Special Issue), 139–149. Baldi, P., Buonasorte, G., Ceccarelli, A., Ridolfi, A., D’Offizi, S., D’Amore, F., Grassi, S., Squarci, P., Taffi, L., Boni, C., Bono, P., Di Filippo, M., Martelli, M.G., Lombardi, S., Toro, B., 1982. Contributo alla conoscenza delle potenzialità geotermiche della Toscana e del Lazio. In: Elias, G., Panichi, C., Squarci, P. (Eds.), Progetto Finalizzato Energetica, Sottoprogetto Energia Geotermica. CNR, Pisa, Italy. Barazzuoli, P., Solleolini, M., 1994. Modelli di valutazione della risorsa idrica rinnovabile del Monte Amiata (Toscana Meridionale). Quaderni di Geologia Applicata 2, 171–185. Barchi, M., Minelli, G., Pialli, G., 1998. The CROP 03 profile: a synthesis of results on deep structures of the Nothern Appennines. Mem. Soc. Geol. Italy 52, 383–400. Batini, F., Brogi, A., Lazzarotto, A., Liotta, D., Pandeli, E., 2003. Geological features of Larderello-Travale and Mt. Amiata geothermal areas (southern Tuscany, Italy). Episodes 26, 239–244. Bernhard, S., 2000. Water97_v13.xla. Excel Add-In for properties of Water and Steam in SI-units. <http://www.cheresources.com/iapwsif97.html>. Bertini, G., Cappetti, G., Dini, I., Lovari, F., 1995. Deep drilling results and updating of geothermal knowledge of the Monte Amiata area. In: Proc. World Geothermal Congress, Florence (Italy), 18–31 May 1995 – International Geothermal Association 2, pp. 1283–1286. Boni, C., Bono, P., Capelli, G., 1986. Schema idrogeologico dell’Italia centrale. Mem. Soc. Geol. Italy 35, 991–1012. Brogi, A., Lazzarotto, A., Liotta, D., Ranalli, G., CROP 18 Working Group, 2005. Crustal structures in the geothermal areas of southern Tuscany (Italy): Insights from CROP 18 deep seismic reflection lines. J. Volcanol. Geotherm. Res. 148, 60–80. Calamai, A., Cataldi, R., Squarci, P., Taffi, L., 1970. Geology, geophysics and hydrogeology of Monte Amiata geothermal fields. Geothermics 1 (Special Issue). Cameli, G.M., Dini, I., Liotta, D., 1998. Brittle/ductile boundary from seismic reflection lines of southern Tuscany (Northern Apennines, Italy). Mem. Soc. Geol. Italy 52, 153–163. Cappetti, G., Ceppatelli, L., 2005. Geothermal power generation in Italy, 2000–2004 update report. In: Proc: World Geothermal Congress, Antalya, Turkey, 24–29 April 2005. Cardellini, C., Chiodini, G., Frondini, F., 2003. Application of Stochastic Simulation to CO2 Flux from soil: Mapping and Quantification of Gas Release. J. Geophys. Res. 108, 2425. doi:10.1029/2002JB002165. Cataldi, R., Mongelli, F., Squarci, P., Taffi, L., Zito, G., Calore, C., 1995. Geothermal ranking of italian territory. Geothermics 24, 115–129. Celati, R., Grassi, S., Calore, C., 1990. Overflow thermal springs of Tuscany (Italy). J. Hydrol. 118, 191–207. Chiodini, G., Frondini, F., 2001. Carbon dioxide degassing from the Albani Hills volcanic region, Central Italy. Chem. Geol. 177, 67–83. Chiodini, G., Baldini, A., Barberi, F., Carapezza, M.L., Cardellini, C., Frondini, F., Granieri, D., Ranaldi, M., 2007. Carbon dioxide degassing at Latera caldera (Italy): Evidence of geothermal reservoir and evaluation of its potential energy. J. Geophys. Res. 112, B12204. 10.1029/2006JB004896. Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., Ventura, G., 2004. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res. Lett. 31, L07615. doi:10.1029/2004GL019480. Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L., 1998. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 13, 543–552. Chiodini, G., Comodi, P., Giaquinto, S., Mattioli, B., Zanzari, A.R., 1988. Cold Groundwater temperatures and conductive heat flow in the Mt. Amiata geothermal area, Tuscany, Italy. Geothermics 17, 645–656. Chiodini, G., Frondini, F., Cardellini, C., Parello, F., Peruzzi, L., 2000. Rate of diffuse carbon dioxide earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine. Italy. J. Geophys. Res. 105, 8423–8434 Chiodini, G., Frondini, F., Kerrick, D.M., Rogie, J.D., Parello, F., Peruzzi, L., Zanzari, A.R., 1999. Quantification of deep CO2 fluxes from Central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chem. Geol. 159, 205–222. Chiodini, G., Frondini, F., Marini, L., 1995. Theoretical geothermometers and PCO2 indicators for aqueous solutions coming from hydrothermal systems of medium-low temperature hosted in carbonate-evaporite rocks. Application to the thermal springs of the Etruscan Swell. Italy. Appl. Geochem. 10, 337–346. Collettini, C., Cardellini, C., Chiodini, G., De Paola, N., Holdsworth, R.E., Smith, S.A.F., 2008. Fault weakening due to CO2 involvement in the extension of the Northern Apennines: short- and long-term processes. Geological Society of London, Special Publication, 299, 151–173. D’Amore, F., Fancelli, R., Saracco, L., Truesdell, A., 1987. Gas geothermometry based on CO content: application to Italian geothermal fields. In: Proc. 12th Workshop on Geothermal Reservoir Engineering, 20–22 January 1987, Stanford, California. SGP-TR-109, pp. 247–252. Decandia, F.A., Lazzarotto, A., Liotta, D., Cernobori, L., Nicolich, R., 1998. The Crop 03 traverse: insights on post-collisional evolution of Northern Apennines. Mem. Soc. Geol. Ital 52, 427–439. Della Vedova, B., Pellis, G., Foucher, J.P., Rehault, J.P., 1984. Geothermal structure of Tyrrhenian Sea. Mar. Geol. 55, 271–289. Deutsch, C.V., Journel, A.G., 1998. GSLIB: Geostatistical Software Library and Users Guide. Oxford Univ Press, New York. Donnini, M., Chiodini, G., Avino, R., Baldini, A., Cardellini, C., Caliro, S., Frondini, F., Granieri, D., Morgantini, N., 2007. Carbon dioxide degassing at Bagni San Filippo (Tuscany, Italy): Quantification and modeling of gas release. Geophys. Res. Abstr. 9, 02954. SRef-ID: 1607-7962/gra/EGU2007-A-02954. Elter, F.M., Pandeli, E., 1991. Structural features of the metamorphic Paleozoic- Triassic sequences in deep geothermal drillings of the Monte Amiata area (SE Tuscany, Italy). Boll. Soc. Geol. Italy 110, 511–522. Fanelli, M., Rossi, A., Salomone, M., Taffi, L., 1980. Temperature and heat flow patterns of Italy. In: Proc. 2nd Internat. Sem. Results EC Geothermal Energy Research. Strasbourg, France, pp. 506–515. Ferrari, L., Conticelli, S., Burlamacchi, L., Manetti, P., 1996. Volcanological evolution of the Monte Amiata, Southern Tuscany: new geological and petrochemical data. Acta Vulcanol. 8, 41–56. Frondini, F., Caliro, S., Cardellini, C., Chiodini, G., Morgantini, N., Parello, F., 2008. Carbon dioxide degassing from Tuscany and Northern Latium (Italy). Global Planet. Change 61, 89–102. doi:10.1016/j.gloplacha.2007.08.009. Gambardella, B., Cardellini, C., Chiodini, G., Frondini, F., Marini, L., Ottonello, G., Vetuschi Zuccolini, M., 2004. Fluxes of deep CO2 in the volcanic areas of centralsouthern Italy. J. Volcanol. Geotherm. Res. 136, 31–52. doi:10.1016/ j.jvolgeores.2004.03.018. Gambardella, B., Marini, L., Baneschi, I., 2005. Dissolved potassium in the shallow groundwaters circulating in the volcanic rocks of central-southern Italy. Appl. Geochem. 20, 875–897. Gianelli, G., 1994. Ipotesi di un mantello di crosta superiore per le aree geotermiche Toscane. Studi Geol. Camerti 1994, 195–200. Gianelli, G., Manzella, A., Puxeddu, M., 1997. Crustal models of the geothermal areas of southern Tuscany, Italy. Tectonophysics 281, 221–239. Gianelli, G., Manzella, A., Puxeddu, M., 1996. Crustal models of the geothermal areas of Larderello and Mt. Amiata, Italy. Geotherm. Res. Council. Trans. 20, 287–293. Giggenbach, W.F., 1987. Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl. Geochem. 2, 143–161. Giggenbach, W.F., Goguel, R.L., 1989. Collection and analysis of geothermal and volcanic water and gas discharges. Report, Department of Science and Industrial Research, Chem. Div., Petone, New Zealand. Giggenbach, W.F., Poreda, R.J., 1993. Helium isotopic and chemical composition of gases from volcanic-hydrothermal systems in the Philippines. Geothermics 22, 369–380. Keenan, J.H., Keyes, F.G., Hill, P.G., Moore, J.G., 1978. Steam tables. Thermodynamic Properties of Waters Including Vapor, Liquid and Solid Phases (International System of Units-S.I. units). Wiley, New York. Kerrick, D.M., McKibben, M.A., Seward, T.M., Caldeira, K., 1995. Convective hydrothermal CO2 emission from high heat flow regions. Chem. Geol. 121, 285–293. Liotta, D., Ranalli, G., 1999. Correlation between seismic reflectivity and rheology in extended lithosphere: southern Tuscany, inner Northern Apennines, Italy. Tectonophysics 315, 109–122. Manga, M., 1998. Advective heat transport by low-temperature discharge in the Oregon cascades. Geology 26, 799–802. Martelli, M.P., Nuccio, M., Stuart, F.M., Burgess, R., Ellam, RM., Italiano, F., 2004. Helium-strontium isotope constraints on mantle evolution beneath the Roman comagmatic province, Italy. Earth. Planet. Sci. Lett. 224, 295–308. Minissale, A., Magro, G., Vaselli, O., Verrucchi, C., Perticone, I., 1997. Geochemistry of water and discharges from Mt. Amiata silicic complex and surrounding areas (central Italy). J. Volcanol. Geotherm. Res. 79, 223–251. Minissale, A., Vaselli, O., Tassi, F., Magro, G., Grechi, G.P., 2002. Fluid mixing in carbonate acquifers near Rapolano (central Italy): chemical and isotopic constraints. Appl. Geochem. 17, 1329–1342. Mongelli, F., Puxeddu, M., Squarci, P., Taffi, L., Zito, G., 1991. Il flusso di calore e l’anomalia geotermica nell’area Tosco-Laziale: implicazioni profonde. Studi Geol. Camerti 1991/1 (Special Issue), 399–402. Parkhurst, D.L., Appelo, C.A.J., 1999. User Guide to PHREEQC (Version 2) – A Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations. US Geol. Surv. Water-Resour. Invest. Rep. 99-4259. Rogie, J.D., Kerrik, D.M., Chiodini, G., Frondini, F., 2000. Flux measurements of nonvolcanic CO2 emission from some vents in Central Italy. J. Geophys. Res. 105, 8435–8445. Ruggieri, G., Giolito, C., Gianelli, G., Manzella, A., Boiron, M.C., 2004. Application of fluid inclusion to the study of Bagnore geothermal field (Tuscany, Italy). Geothermics 33, 675–692. Rybach, L., 1981. Geothermal systems, conductive heat flow, geothermal anomalies. In: Rybach, L., Muffler, L.J.P. (Eds.), Geothermal Systems: Principles and Case Histories. John Wiley, New York, pp. 3–35. Sammarco, G., Sammarco, O., 2002. Gas da acque termo-minerali: modalità di liberazione, rischi e cautele. Acque Sotterranee 78, 35–46. Seward, T.M., Kerrick, D.M., 1996. Hydrothermal CO2 emission from the Taupo Volcanic zone, New Zealand. Earth Planet. Sci. Lett. 139, 105–113. Sorey, M.L., Lewis, R.E., 1976. Convective heat flow from hot springs in the Long Valley Caldera, Mono County. California. J. Geophys. Res. 81, 785–791. Taran, Y.A., 2005. A method for determination of the gas–water ratio in bubbling springs. Geophys. Res. Lett. 32, L23403. doi:10.1029/2005GL24547.en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorFrondini, F.en
dc.contributor.authorCaliro, S.en
dc.contributor.authorCardellini, C.en
dc.contributor.authorChiodini, G.en
dc.contributor.authorMorgantini, N.en
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Perugia, Piazza dell’Università, I-06123 Perugia, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Perugia, Piazza dell’Università, I-06123 Perugia, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Scienze della Terra, Universita` di Perugia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptDipartimento di fisica e Geologia di Perugia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptARPA Umbria-
crisitem.author.orcid0000-0002-7539-9541-
crisitem.author.orcid0000-0002-8522-6695-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Frondini et al., 2009 APGEO.pdf2.02 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

53
checked on Feb 7, 2021

Page view(s) 20

400
checked on Apr 24, 2024

Download(s)

64
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric