Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5816
DC FieldValueLanguage
dc.contributor.authorallVoltattorni, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallSciarra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallQuattrocchi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2010-01-22T15:58:05Zen
dc.date.available2010-01-22T15:58:05Zen
dc.date.issued2009-01en
dc.identifier.urihttp://hdl.handle.net/2122/5816en
dc.description.abstractGeochemical studies were conducted throughout soil gas and flux surveying for locating both permeable zones in buried reservoirs and the presence of possible gaseous haloes linked to active geothermal systems. In this work we focused our interest on the distribution of soil gas concentrations (Rn, Th, He, H2, O2, N2, CO2, CH4 and H2S) in the soil air of the Tetitlan area considered a potential thermal field and characterized by scarcity of surface manifestations. Radon is used as a tracer gas to provide a qualitative idea of gas transfer (velocity and flux), carbon dioxide and methane are believed to act as carriers for other gases (i.e., Rn and He), helium and hydrogen are used as shallow signals of crustal leaks along faults (Ciotoli et al., 2005). Methane is also considered both a characteristic biogenic indicator of organic matter deposits and a tracer of major crustal discontinuity. A total of 154 soil gas samples were collected in an area of about 80 square kilometres. The same area was investigated throughout a total of 346 of CO2 and CH4 flux measurements.en
dc.description.sponsorshipUNAMen
dc.language.isoEnglishen
dc.subjectsoil-gasen
dc.subjectgeothermal fielden
dc.titleThe application of soil gas technique to geothermal exploration:en
dc.typereporten
dc.description.statusUnpublisheden
dc.type.QualityControlUnreferreden
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical explorationen
dc.relation.referencesAnnunziatellis, A., G. Ciotoli, S. Lombardi, and F. Nolasco (2003), Short and long term gas hazard: The release of toxic gases in the Alban Hills volcanic area (central Italy), J. Geochem. Explor., 77, 93– 108. Baldocchi, D.D. and T.P. Meyers (1991) Trace gas exchange above the floor of a deciduous forest, Evaporation and CO2 flux, J.G.R., 96, 7271-7285. Baubron, J. C., A. Rigo, and J. P. Toutain (2002), Soil gas profiles as a tool to characterise active tectonic areas: The Jaut Pass example (Pyrenees, France), Earth Planet. Sci. Lett., 196, 69– 81. Beaubien S.E., S. Lombardi and N. Voltattorni (2002) – Radon studies for investigation of nuclear waste deposits and natural emissions. In: "Lake Issyk-kul: Its Natural Environment". Edited by J. Klerks & B. Imanackunov . Nato Science Series, IV. Earth and Environmental Sciences, 13, 245-260. Beaubien, S. E., G. Ciotoli, and S. Lombardi (2003), Carbon dioxide and radon gas hazard at the Alban Hill Area (central Italy), J. Volcanol. Geotherm. Res., 123, 63– 80. Bergfeld, D., F. Goff, , P. Allard (2001), Preface—high CO2 flux measurements in volcanic and geothermal areas, methodologies and results. Chem. Geol. 177 (1–2), 1. Cardellini, C., G. Chiodini and F. Frondini (2003). Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J.G.R., 108 (B9), 2425-2438. Chiodini, G., F. Frondini and F. Ponziani (1995), Deep structures and carbon dioxide degassing in Central Italy, Geothermics, 24, 81-94. Chiodini, G., R. Cioni, M. Guidi, B. Raco, L. Marini (1998), Soil CO2 flux measurements in volcanic and geothermal areas, Applied Geochemistry, 13 (5), 543-552. Chiodini, G., F. Frondini, C. Cardellini, C. Parello, and L. Peruzzi (2000), Rate of diffuse carbon dioxide. Earth degassing estimated from carbon balance of regional aquifers: the case of central Apennines, Italy, J.G.R., 105 (B4), 8423-8434. Chiodini, G. and F. Frondini (2001), Carbon dioxide degassing from the Albani Hills volcanic region, Central Italy. Chemical Geology, 177, 67-83. Ciotoli, G., M. Guerra, S. Lombardi, and E. Vittori (1998), Soil gas survey for tracing seismogenic faults: A case study in the Fucino Basin, central Italy, J. Geophys. Res., 103, 23,781– 23,794. Ciotoli, G., G. Etiope, M. Guerra, and S. Lombardi (1999), The detection of concealed faults in the Ofanto basin using the correlation between soilgas fracture surveys, Tectonophysics, 299(3)–(4), 321–332. Ciotoli, G., S. Lombardi, S. Morandi, and F. Zarlenga (2005), A multidisciplinary statistical approach to study the relationships between helium leakage and neo-tectonic activity in a gas province: The Vasto Basin, Abruzzo-Molise (central Italy), AAPG Bull., 88(3), 355–372. Conen, F., K.A. Smith (2000), An explanation of linear increases in the gas concentration under closet chambers used to measure gas exchange between soils and the atmosphere. European J. Soil Science, 51, 111-117. Etiope, G., M. Guerra, and A. Raschi (2005), Carbon dioxide and radon geohazards over a gas-bearing fault in the Siena graben (central Italy), TAO, 16(4), 885– 896. Ferrari, L., Petrone C.M., Francalanci, L., Tagami, T., Eguchi, M., Ponticelli S., Manetti P., and S. Venegas-Salgado (2003), Geology of the San Pedro-Ceboruco graben, western trans-mexican volcanic belt. Revista Mexicana de Ciencias Geologicas, 20, 3, 165-181. Fridman, A. I. (1990), Application of naturally occurring gases as geochemical pathfinders in prospecting for endogenetic deposits, J. Geochem. Explor., 38, 1–11. Hinkle, M. (1994), Environmental conditions affecting concentrations of He, CO2, O2 and N2 in soil gases, Appl. Geochem., 9, 53– 63. Kicklighter, D.W., J.M. Melillo, W.T. Peterjohn, E.B. Rastetter, A.D. McGuire and P.A. Steudler (1994), Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils, J.G.R., 99, 1303-1315. King, C. Y., B. S. King, W. C. Evans, and W. Zang (1996), Spatial radon anomalies on active faults in California, Appl. Geochem., 11, 497–510. Klusman, R. W. (1993), Soil Gas and Related Methods for Natural Resource Exploration, 483 pp., John Wiley, New York. Lombardi, S., et al. (1996), The refinement of soil gas analysis as a geological investigative technique, in 4th CEC R&D Programme on Management and Storage of Radioactive Waste (1990 – 1994), final report, Nucl. Sci. Technol. Ser. EUR 16929, 193 pp., Eur. Comm., Brussels. Lombardi S. and N.Voltattorni (2003) Study of a Natural Analogue of the Thermo-hydro-chemical and Thermo-hydro-mechanical Response of Clay Barriers: the Orciatico area (Tuscany, Central Italy) EGS-AGU-EUG Joint Assembly, Nice, France, 6-11 April. Geophysical Research Abstracts, (5), NH 10. Mancini, C., F. Quattrocchi, C. Guadoni, L. Pizzino and B. Porfidia (2000). 222Rn study throughout different seismotectonical areas: comparison between different techniques for discrete monitoring, Ann. Geof., 43 (1), 1-28. Matthews, M. D. (1985), Effects of hydrocarbon leakage on Earth surface materials, in Unconventional Methods in Exploration for Petroleum and Natural Gas, IV, edited by M. J. Davidson, pp. 27– 44, South. Methodist Univ. Press, Dallas, Tex. Morner, N.A. and G. Etiope (2002), Carbon degassing from the lithosphere. Global Planet. Change 33 (1–2), 185–203. Norman, J.M., C.J. Kucharik, S.T. Gower, D.D. Baldocchi, P.M. Crill, M. Rayment, K. Savage and R.G. Striegl (1997). A comparison of six methods for measuring soil surface carbon dioxide fluxes. J.G.R., 102, 28771-28777. Pizzino L, P. Burrato, F. Quattrocchi and G. Valensise (2004). Geochemical signature of large active faults: the example of the 5 February 1783, Calabrian Earthquake, Journal of Seismology, 8, 363-380. Salvi S., Quattrocchi F., Angelone M., Brunori C.A., Billi A., Buongiorno F., Doumaz F., Funiciello R., Guerra M., Lombardi S., Mele G., Pizzino L., Salvini F. (2000). A multidisciplinary approach to earthquake research: implementation of a Geochemical Geographic Information System for the Gargano site, Southern Italy. Natural Hazard, 20 (1), 255-278. Quattrocchi, F., M. Guerra, L. Pizzino and S. Lombardi (1999). Radon and helium as pathfinders of fault systems and groundwater evolution in different Italian areas, Il Nuovo Cimento, 22 (3-4), 309-316. Reimer, G. M. (1990), Reconnaissance techniques for determining soil-gas radon concentrations: An example from Prince Georges County, Maryland, Geophys. Res. Lett., 17, 809–812. Segovia, N., J. L. Seidel, and M. Monnin (1987), Variations of radon in soils induced by external factors, J. Radioanal. Nucl. Chem. Lett., 119, 199– 209. Singh, A.K. and M. Engelhardt (1997), The lognormal distribution in environmental applications. EPA/600/R-97/066. Environmental Protection Agency, Washington, DC. Sinclair, A. J. (1991), A fundamental approach to threshold estimation in exploration geochemistry: Probability plots revisited, J. Geochem. Explor., 41, 1– 22. Sokolov, V. A. (1971), Geochemistry of Natural Gases, Niedra, Moscow. Sugisaki, R., H. Anno, M. Aedachi, and H. Ui (1980), Geochemical features of gases and rocks along active faults, Geochem. J., 36, 101–112. Voltattorni N., Caramanna G., Cinti D., Galli G., Pizzino L., Quattrocchi F. (2005): Study of CO2 natural emissions in different italian geological scenarios: a refinement of natural hazard and risk assessment. In: “Advances in the Geological Storage of Carbon Dioxide, eds. Lombardi S., Altunina L.K. and Beaubien S.E., NATO Science Series, Springer Publishing, Berlin, 2006, XV, 362 p., Softcover. ISBN: 1-4020-4470-4 Werner, C., S.L. Brantley, K. Boomer, (2000), CO2 emissions related to the Yellowstone volcanic system. 2. Statistical sampling, total degassing, and transport mechanisms. J. Geophys. Res. 105 (B5), 10831–10846. Zhang, X., and D. J. Sanderson (1996), Numerical modeling of the effects of fault slip on fluid flow around extensional faults, J. Struct. Geol., 18, 109– 119. Zhiguan, S. (1991), A study on the origin of fault gases in western Yunnan, Earthquake Res. China, 5(1), 45–52.en
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.fulltextopenen
dc.contributor.authorVoltattorni, N.en
dc.contributor.authorSciarra, A.en
dc.contributor.authorQuattrocchi, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypereport-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_93fc-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-3940-8383-
crisitem.author.orcid0000-0003-3767-3105-
crisitem.author.orcid0000-0002-7822-1394-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Reports
Files in This Item:
File Description SizeFormat
Mex Rep.pdfreport2.08 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

267
checked on Apr 20, 2024

Download(s) 20

428
checked on Apr 20, 2024

Google ScholarTM

Check