Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5755
DC FieldValueLanguage
dc.contributor.authorallTinti, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCocco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallFukuyama, E.; National Research Institute for Earth Sciences and Disaster Prevention Tsukuba, Ibaraki 305-0006, Japanen
dc.contributor.authorallPiatanesi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2010-01-21T16:48:01Zen
dc.date.available2010-01-21T16:48:01Zen
dc.date.issued2009-06en
dc.identifier.urihttp://hdl.handle.net/2122/5755en
dc.description.abstractIn this study we aim to understand the dependence of the critical slip weakening distance (Dc) on the final slip (Dtot) during the propagation of a dynamic rupture and the consistency of their inferred correlation. To achieve this goal we have performed a series of numerical tests suitably designed to validate the adopted numerical procedure and to verify the actual capability in measuring Dc. We have retrieved two kinematic rupture histories from spontaneous dynamic rupture models governed by a slip weakening law in which a constant Dc distribution on the fault plane as well as a constant Dc / Dtot ratio are assumed, respectively. The slip velocity and the shear traction time histories represent the synthetic “real” target data which we aim to reproduce. We use a 3-D traction-at-split nodes numerical procedure to image the dynamic traction evolution by assuming our modeled slip velocity as a boundary condition on the fault plane. We assume a regularized Yoffe function as source time function in our modeling attempts and we measure the critical slip weakening distance from the inferred traction versus slip curves at each point on the fault. We compare the inferred values with those of the target dynamic models. Our numerical tests show that fitting the slip velocity functions of the target models at each point on the fault plane is not enough to retrieve good traction evolution curves and to obtain reliable measures of Dc. We find that the estimation of Dc is very sensitive to any small variation of the slip velocity function. An artificial correlation between Dc/Dtot is obtained when a fixed shape of slip velocity is assumed on the fault (i.e., constant rise time and constant time for positive acceleration) which differs from that of the target model. We point out that the estimation of fracture energy (breakdown work) on the fault is not affected by biases in measuring Dc.en
dc.description.sponsorshipFIRB-MIUR project Airplane (RBPR05B2ZJ 006)en
dc.language.isoEnglishen
dc.publisher.nameBlackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries3/177(2009)en
dc.subjectEarthquake dynamicsen
dc.subjectEarthquake ground motionsen
dc.subjectComputational seismologyen
dc.subjectTheoretical seismologyen
dc.titleDependence of slip weakening distance (Dc) on final slip during dynamic rupture of earthquakesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1205-1220en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.identifier.doi10.1111/j.1365-246X.2009.04143.xen
dc.relation.referencesAbercrombie R., and J. R. Rice, (2005), Can obstervations of earthquake scaling constrain slip weakening?, Geophys. J. Int., 162, 406-424. Andrews, D. J., (2002), A fault constitutive relation accounting for thermal pressurization of pore fluid, J. Geophys. Res., 107, 2363, doi:10.1029/2002JB001942. Bizzarri A., and M. Cocco, (2003), Slip-weakening behavior during the propagation of dynamic ruptures obeying rate- and state-dependent friction laws, J. Geophys. Res., 108 (B8), 2373, doi: 10.1029/2002JB002198. Bizzarri A., and M. Cocco, (2006a) A thermal pressurization model for the spontaneous dynamic rupture propagation on a 3-D fault: Part I – Methodological approach, J. Geophys. Res., 111, B05303, doi:10.1029/2005JB003862. Bizzarri A., and M. Cocco, (2006b) A thermal pressurization model for the spontaneous dynamic rupture propagation on a 3-D fault: Part II – Traction evolution and dynamic parameters, J. Geophys. Res., 111, B05304, doi:10.1029/2005JB003864. Bouchon, M., (1997), The state of stress on some faults of the San Andreas system as inferred from near-field strong motion data, J. Geophys. Res.,102(B6), 11731-1744. Campillo M, and I.R. Ionescu, (1997), Initiation of antiplane shear instability under slip dependent friction, J. Geophys. Res., 102 (B9), 20363-20371. Chambon G., J. Shmittbuhl, and A. Corfdir (2006), Frictional response of a thick gouge sample: I Mechanical measurements and microstructures, J. Geophys. Res., 111(B9) B09308, doi:10.1029/2003JB002731. Cocco M., and A. Bizzarri, (2002), On the slip-weakening behavior of rate- and state dependent constitutive laws, Geophys. Res. Lett., 29, 11, doi:10.1029/2001GL013999. Cocco, M., P. Spudich and E. Tinti, (2006) On the mechanical work absorbed on faults during earthquake rupture, in Earthquakes Radiated Energy and the Physics of Faulting, Eds. R. Abercrombie, A. McGarr, H. Kanamori and G. Di Toro, Geophysical Monograph Series, 170, 237-254, American Geophysical Union, Washington D. C., 10.1029/170GM24. Cocco, M. and E. Tinti, (2008) Scale dependence in the dynamics of earthquake propagation: Evidence from seismological and geological observations, Earth Planet. Sci. Lett., 273(1-2),123-131. Cocco, M., Tinti, E., Marone, C. & Piatanesi, A., (2009) Scaling of slip weakening distance with final slip during dynamic earthquake rupture, in: Fault-zone Properties and Earthquake Rupture Dynamics, edited by E. Fukuyama, International Geophysics Series, 94, 163-186, Elsevier. Dalguer L.A., Irikura K., and J. D. Riera JD, (2003) Generation of new cracks accompanied by the dynamic shear rupture propagation of the 2000 Tottori (Japan) earthquake, Bull. Seismol. Soc. Am., 93 (5): 2236-2252. Das, S., and K. Aki, (1977) A numerical study of two-dimensional spontaneous rupture propagation, Geophys. J. Roy. astr. Soc., 50, 643-668. Day, S. M., G. Yu and D. J. Wald (1998) Dynamic stress changes during earthquake rupture, Bull. Seismol. Soc. Am., 88, 512-522. Di Toro, G., D. L. Goldsby, and T.E. Tullis, (2004), Friction falls towards zero in quartz rock as slip velocity approaches seismic rates, Nature, 427, 436-439. Dieterich, J. H., (1979), Modeling of rock friction - 1. Experimental results and constitutive equations J. geophys. Res., 84 (B5), 2161–2168. Dreger D., Tinti E., and A. Cirella, (2007), Slip Velocity Function Parameterization for Broadband Ground Motion Simulation, Seism. Res. Lett., 78(2), 308. Fukuyama, E. (2003) Numerical modeling of earthquake dynamic rupture: Requirements for realistic modeling, Bull. Earthq. Res. Inst., 78, 167-174. Fukuyama, E. and R. Madariaga (1995), Integral-equation method for plane crack with arbitrary shape in 3d elastic medium, Bull. Seismol. Soc. Am., 85, 614-628. Fukuyama, E. and R. Madariaga (1998) Rupture dynamics of a planar fault in a 3D elastic medium: Rate-and slip-weakening friction, Bull. Seismol. Soc. Am., 88, 1-17. Fukuyama, E., T. Mikumo, and K. B. Olsen, (2003), Estimation of the critical slip-weakening distance: Theoretical background, Bull. Seismol. Soc. Am., 93,1835-1840. Fukuyama, E. and T. Mikumo (2004), Is Slip Weakening Distance Proportional to Final Slip?, Seismol. Res. Lett., 75(2), 269 (Abstract for 2004 SSA Annual Meeting). Guatteri, M. and P. Spudich, (2000), What can strong-motion data tell us about slip-weakening fault-friction laws?, Bull. Seismol. Soc. Am., 90, 98-116. Guatteri, M., Spudich P. And Beroza G., (2001), Inferring rate and state friction parameters from a rupture model of the 1995 Hygo-ken Nanbu (Kobe) Japan earthquake, J. Geophys. Res., 106, B11, 26511-26521. Harris, R. A. (2004) Numerical simulations of large earthquakes: dynamic rupture propagation on heterogeneous faults, Pure Appl. Geophys., 161, 2171-2181. Hillers G., Y. Ben-Zion, and P. M. Mai, (2006), Seismicity on a fault with rate- and state- dependent friction and spatial variations of the critical slip distance, J. Geophys. Res., 111 (B01403), doi: 10.1029/2005JB003859. Hirose, T. and M. Bystricky (2007) Extreme dynamic weakening of faults during dehydration by coseismic shear heating, Geophys. Res. Lett., 34(14), L14311, doi:10.1029/2007GL030049. Hirose, T., and T. Shimamoto, (2005), Slip-weakening distance of faults during frictional melting as inferred from experimental and natural pseudotachylytes, Bull. Seismol. Soc. Am., 95, 1666-1673. Ida, Y., (1972), Cohesive force across the tip of a longitudinalshear crack and Griffith’s specific surface energy. J. Geophys. Res. 77, 3796-3805. Ide, S. and M. Takeo, (1997), Determination of constitutive relations of fault slip based on seismic wave analysis, J. Geophys. Res., 102(B12), 27379-27391. Lockner, D. A. and P. G. Okubo (1983) Measurements of frictional heating in granite, J. Geophys. Res., 88(NB5), 4313-4320. Ma, S., and R. J. Archuleta (2006) Radiated seismic energy based on dynamic rupture models of faulting, 111, doi:10.1029/2005JB004055. in Earthquakes Radiated Energy and the Physics of Faulting, Eds. R. Abercrombie, A. McGarr, H. Kanamori and G. Di Toro, Geophysical Monograph Series, Mase, C. and L. Smith, (1987). Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault. J. Geophys. Res., 92(B7), 6249-6272. Matsu’ura, M., H. Kataoka, and B. Shibazaki, (1992), Slip-dependent friction law and nucleation processes in earthquake rupture, Tectonophysics, 211, 135-148. Mikumo, T., K. B. Olsen, E. Fukuyama and Y. Yagi, (2003), Stress-breakdown time and slip-weakening distance inferred from slip-velocity functions on earthquake faults, Bull. Seismol. Soc. Am., 93(1), 264-282. Mikumo, T., and E. Fukuyama, (2006), Near-source released energy in relation to fracture energy on earthquake faults, , Bull. Seismol. Soc. Am., 96(3), 1177–1181. Miyatake, T. (1992) Reconstruction of dynamic rupture process of an earthquake with constraints of kinematic parameters, Geophys. Res. Lett., 19(4), 349–352. Nakamura, H., and T. Miyatake (2000) An approximate expression of slip velocity time functions for simulation of near-field strong ground motion, Zisin (J. Seism. Soc. Jpn.), 53, 1-9 (in Japanese with English abstract). Nielsen, S., and R. Madariaga, (2000), On the self-healing fracture mode, Bull. Seismol. Soc. Am., 93(6), 2375-2388. Ohnaka, M., Y. Kuwahara, and K. Yamamoto (1987) Constitutive relations between dynamic physical parameters near a tip of the propagating slip zone during stick-slip shear failure, Tectonophysics, 144, 109-125. Ohnaka, M. (2003) A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture, J. Geiophys. Res., 108(B2), 2080, doi:10.1029/2000JB000123. Okubo, P. G. and J. Dieterich, (1984) Effect of physical fault properties on frictional instabilities produced on simulated faults, J. Geophys. Res., 89(NB7), 5817-5827. Palmer, A. C., J. R. Rice, (1973), The growth of slip surfaces in the progressive failure of over- consolidated clay. Proc. R. Soc. London Ser. A 332, 527-548. Peyrat, S., K. B. Olsen, and R. Madariaga, (2001) Dynamic modeling of the 1992 Landers earthquake, J. Geophys. Res., 106(B11), 26467-26482. Piatanesi, A., E. Tinti, M. Cocco and E. Fukuyama, (2004), The dependence of traction evolution on the earthquake source time function adopted in kinematic rupture models, Geophys. Res. Lett., 31, doi:10.1029/2003GL019225. Pulido, N and K. Irikura, (2000), Estimation of dynamic rupture parameters from the radiated seismic energy and apparent stress, Geophys. Res. Lett., 27(23), 3945-3948. Rice, J. R., (2006), Heating and weakening of faults during earthquake slip, J. Geophys. Res., 111, B05311, doi:10.1029/2005JB004006. Rice, J. R., and M. Cocco, 2007, Seismic fault rheology and earthquake dynamics, in Tectonic Faults: Agents of Change on a Dynamic Earth, eds. M. R. Handy, G. Hirth and N. Hovius (Dahlem Workshop 95, Berlin, January 2005, on The Dynamics of Fault Zones), Chp. 5, pp. 99-137, The MIT Press, Cambridge, MA, USA, 446 pages. Sen M., and P.L. Stoffa, (1991), Nonlinear one-dimensional seismic waveform inversion using simulated annealing, Geophysics, 56, 1624-1638. Spudich, P., and M. Guatteri, (2004), The effect of bandwidth limitations on the inference of earthquake slip-weakening distance from seismograms, Bull. Seismol. Soc. Am., 94, 2028-2036 Tinti, E., A. Bizzarri, A. Piatanesi, and M. Cocco (2004), Estimates of slip weakening distance for different dynamic rupture models, Geophys. Res. Lett., 31, L02611, doi:10.1029/2003GL018811. Tinti, E., P. Spudich, and M. Cocco, (2005a), Earthquake fracture energy inferred from kinematic rupture models on extended faults, J. Geophys. Res., 110, B12303, doi: 10.1029/ 2005JB00364 Tinti, E., E. Fukuyama, A. Piatanesi and M. Cocco, (2005b), A kinematic source time function compatible with earthquake dynamics, Bull. Seismol. Soc. Am., 95(4), 1211–1223. Tsutsumi, A., and T. Shimamoto (1997), High-velocity frictional properties of gabbro, Geophys. Res. Lett., 24, 699– 702. Yasuda T., Y. Yagi, T. Mikumo, T. Miyatake (2005), A comparison between Dc’-values obtained from a dynamic rupture model and waveform inversion, Geophys. Res. Lett., 32, L14316, doi:10.1029/2005GL023114 Zhang, W. T. Iwata, K. Irikura, H. Sekiguchi, and M. Bouchon, (2003), Heterogeneous distribution of the dynamic source parameters of the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 108(B5), 2232, doi:10.1029/2002JB001889.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorTinti, E.en
dc.contributor.authorCocco, M.en
dc.contributor.authorFukuyama, E.en
dc.contributor.authorPiatanesi, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentNational Research Institute for Earth Sciences and Disaster Prevention Tsukuba, Ibaraki 305-0006, Japanen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptNational Research Institute for Earth Science and Disaster Prevention, Tsukuba, Japan-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-6942-3592-
crisitem.author.orcid0000-0001-6798-4225-
crisitem.author.orcid0000-0003-2863-3662-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
tinti_GJI_published.pdfPublished pape1.32 MBAdobe PDF
GJI_Tinti_etal_inpress.pdfManuscript latest version1.32 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

35
checked on Feb 7, 2021

Page view(s)

167
checked on Apr 17, 2024

Download(s) 20

303
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric