Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5754
DC FieldValueLanguage
dc.contributor.authorallRhoades, D. A.; GNS Science, Lower Hutt, New Zealanden
dc.contributor.authorallPapadimitriou, E. E.; Geophysics Department, University of Thessaloniki, GR54124 Thessaloniki, Greeceen
dc.contributor.authorallKarakostas, V. G.; Geophysics Department, University of Thessaloniki, GR54124 Thessaloniki, Greeceen
dc.contributor.authorallConsole, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMurru, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2010-01-21T16:44:06Zen
dc.date.available2010-01-21T16:44:06Zen
dc.date.issued2010-
dc.identifier.urihttp://hdl.handle.net/2122/5754en
dc.descriptionA systematic analysis is made of static Coulomb stress changes and earthquake occurrence in the area of the North Aegean Sea, Greece, in order to assess the prospect of using static stress changes to construct a regional earthquake likelihood model.en
dc.description.abstractA systematic analysis is made of static Coulomb stress changes and earthquake occurrence in the area of the North Aegean Sea, Greece, in order to assess the prospect of using static stress changes to construct a regional earthquake likelihood model. The earthquake data set comprises all events of magnitude M ≥ 5.2 which have occurred since 1964. This is compared to the evolving stress field due to constant tectonic loading and perturbations due to coseismic slip associated with major earthquakes (M ≥ 6.4) over the same period. The stress was resolved for sixteen fault orientation classes, covering the observed focal mechanisms of all earthquakes in the region. Analysis using error diagrams shows that earthquake occurrence is better correlated with the constant tectonic loading component of the stress field than with the total stress field changes since 1964, and that little, if any, information on earthquake occurrence is lost if only the maximum of the tectonic loading over the fault orientation classes is considered. Moreover, the information on earthquake occurrence is actually increased by taking the maximum of the evolving stress field since 1964, and of its coseismic–slip component, over the fault orientation classes. The maximum, over fault orientation classes, of linear combinations of the tectonic loading and the evolving stress field is insignificantly better correlated with earthquake occurrence than the maximum of the tectonic loading by itself. A composite stress–change variable is constructed from ordering of the maximum tectonic loading component and the maximum coseismic–slip component, in order to optimize the correlation with earthquake occurrence. The results indicate that it would be difficult to construct a time–varying earthquake likelihood model from the evolving stress field that is more informative than a time–invariant model based on the constant tectonic loading.en
dc.description.sponsorshipThis research was supported by the Foundation for Research, Science and Technology under contract CO5X0402. Geophysics Department, AUTH, contribution number 741.en
dc.language.isoEnglishen_US
dc.publisher.namespringeren_US
dc.relation.ispartofPure and Applied Geophysicsen_US
dc.relation.ispartofseries/167 (2010)en_US
dc.subjectEarthquake predictionen
dc.subjectstatic stress changesen
dc.subjectGreeceen
dc.titleCorrelation of Static Stress Changes and Earthquake Occurrence in the North Aegean Regionen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber1049–1066en_US
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.03. Forecastsen
dc.identifier.doi10.1007/s00024-010-0092-2en_US
dc.relation.referencesARMIJO, R., FLERIT, F., KING, G. and MEYER, B. (2003). Linear elastic fracture mechanics explains the past and present evolution of the Aegean. Earth Planet. Sci. Lett., 217, 85–95. COCCO, M. and RICE, J. R. (2002). Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. J. Geophys. Res., 107, doi: 10.1029/2000JB000138. CONSOLE, R., RHOADES, D. A., MURRU, M., EVISON, F. F., PAPADIMITRIOU, E. E. and KARAKOSTAS, V. G. (2006). Comparative performance of time–invariant, long– range and short–range forecasting models on the earthquake catalogue of Greece. J. Geophys. Res., 111, B09304, doi:10.1029/2005JB004113. DENG, J. and SYKES, L. R. (1997). Evolution of the stress field in southern California and triggering of moderate–size earthquakes: A 200–year perspective. J. Geophys. Res., 102, 9859–9886. ERIKSON, L. (1986). User’s manual for DIS3D: A three–dimensional dislocation program with applications to faulting in the Earth. Masters Thesis, Stanford Univ., Stanford, Calif., 167 pp. FIELD, E. H. (2007). Overview of the Working Group for the Development of Regional Earthquake Likelihood Models. Seism. Res. Lett., 78(1), 8–16. HARDEBECK, J. L. (2004). Stress triggering and earthquake probability estimates. J. Geophys. Res., 109, B04310, doi: 10.1029/2003JB002437. HARRIS, R. A. (1998). Introduction to special session: Stress triggers, stress shadows, and implications for seismic hazard. J. Geophys. Res., 103, 24347–24358. JACKSON, J., HAINS, A. J. and HOLT, W. E. (1994). A comparison of satellite laser ranging and seismicity data in the Aegean region. Geophys. Res. Lett., 21, 2849–2852. KAGAN, Y. T., JACKSON, D. D. and LIU, Z. (2005). Stress and earthquakes in southern California, 2850–2004. J. Geophys. Res., 110, doi:10.1029/2004JB003313. KING, G. C. P., STEIN, R. S., and LIN, J. (1994a). Static Stress Changes and Triggering of Earthquakes. Bull. Seism. Soc. Am., 84, 935–953. KING, G., OPPENHEIMER, D. and AMELUNG, F. (1994b). Block versus continuum deformation in the western United States. Earth Planet. Sci. Lett., 128, 55–64. KING, G. C. P., HUBERT–FERRARI, A., NALBANT, S. S., MEYER, B., ARMIJO, R. and BOWMAN, D. (2001). Coulomb interactions and the 17 August 1999 Izmit, Turkey earthquake. Earth Planet. Sci., C. R. Acad. Sci. Paris, 333, 557–569. KIRATZI, A. A., WAGNER, G. and LANGSTON, C. (1991). Source parameters of some large earthquakes in Northern Aegean determined by body waveform modeling. , 135515–527 LOUVARI, E. (2000). A detailed seismotectonic study in the Aegean Sea and the surrounding area with emphasis on the information obtained from microearthquakes. PhD Thesis, Aristotle Univ., Thessaloniki, Greece, pp. 373. MALLMAN, E. P. and ZOBACK, M. D. (2007). Assessing elastic Coulomb stress transfer models using seismicity rates in southern California and southwestern Japan. J. Geophys. Res., 112, B03304, doi:10.1029/2005JB004076. MCCLUSKY, S., BALASANIAN, S., BARKA, A., DEMIR, C., GEORGIEV, I., HAMBURGER, M., HURST, K., KAHLE, H., KASTENS, K., KEKEKIDZE, G., KING, R., KOTSEV, V., LENK, O., MAHMOUD, S., MISHIN, A., NADARIYA, M., OUZOUNIS, A., PARADISIS, D., PETER, Y., PEILEPI, M., REILINGER, R., SANLI, I., SEEGER, H., TEALEB, A., TOKSOZ, M. N. and VEIS, G. (2000). GPS constraints on crustal movements and deformations in the Eastern Mediterranean (1988–1997): Implications for plate dynamics. J. Geophys. Res., 105, 5695–5719. MCKENZIE, D. (1972). Active tectonics of the Mediterranean region. Geophys. J. R. astr. Soc., 30, 109–185. MICHAEL, A. J. (2005). Viscoelasticity, postseismic slip, fault interactions, and the recurrence of large earthquakes. Bull. Seism. Soc. Am., 95, 1594–1603. MOLCHAN, G. M. (1990). Strategies in Strong Earthquake Prediction. Phys. Earth Planet. Inter., 61, 84–98. MOLCHAN, G. M. (1991). Structure of Optimal Strategies of Earthquake Prediction. Tectonophysics, 193, 267–276. OKADA, Y. (1992). Internal deformation due to shear and tensile faults in a half–space. Bul. Seism. Soc. Am., 82, 1018–1040. KING, G., OPPENHEIMER, D. and AMELUNG, F. (1994b). Block versus continuum deformation in the western United States. Earth Planet. Sci. Lett., 128, 55–64. KING, G. C. P., HUBERT–FERRARI, A., NALBANT, S. S., MEYER, B., ARMIJO, R. and BOWMAN, D. (2001). Coulomb interactions and the 17 August 1999 Izmit, Turkey earthquake. Earth Planet. Sci., C. R. Acad. Sci. Paris, 333, 557–569. KIRATZI, A. A., WAGNER, G. and LANGSTON, C. (1991). Source parameters of some large earthquakes in Northern Aegean determined by body waveform modeling. , 135515–527 LOUVARI, E. (2000). A detailed seismotectonic study in the Aegean Sea and the surrounding area with emphasis on the information obtained from microearthquakes. PhD Thesis, Aristotle Univ., Thessaloniki, Greece, pp. 373. MALLMAN, E. P. and ZOBACK, M. D. (2007). Assessing elastic Coulomb stress transfer models using seismicity rates in southern California and southwestern Japan. J. Geophys. Res., 112, B03304, doi:10.1029/2005JB004076. MCCLUSKY, S., BALASANIAN, S., BARKA, A., DEMIR, C., GEORGIEV, I., HAMBURGER, M., HURST, K., KAHLE, H., KASTENS, K., KEKEKIDZE, G., KING, R., KOTSEV, V., LENK, O., MAHMOUD, S., MISHIN, A., NADARIYA, M., OUZOUNIS, A., PARADISIS, D., PETER, Y., PEILEPI, M., REILINGER, R., SANLI, I., SEEGER, H., TEALEB, A., TOKSOZ, M. N. and VEIS, G. (2000). GPS constraints on crustal movements and deformations in the Eastern Mediterranean (1988–1997): Implications for plate dynamics. J. Geophys. Res., 105, 5695–5719. MCKENZIE, D. (1972). Active tectonics of the Mediterranean region. Geophys. J. R. astr. Soc., 30, 109–185. MICHAEL, A. J. (2005). Viscoelasticity, postseismic slip, fault interactions, and the recurrence of large earthquakes. Bull. Seism. Soc. Am., 95, 1594–1603. MOLCHAN, G. M. (1990). Strategies in Strong Earthquake Prediction. Phys. Earth Planet. Inter., 61, 84–98. MOLCHAN, G. M. (1991). Structure of Optimal Strategies of Earthquake Prediction. Tectonophysics, 193, 267–276. OKADA, Y. (1992). Internal deformation due to shear and tensile faults in a half–space. Bul. Seism. Soc. Am., 82, 1018–1040. KING, G., OPPENHEIMER, D. and AMELUNG, F. (1994b). Block versus continuum deformation in the western United States. Earth Planet. Sci. Lett., 128, 55–64. KING, G. C. P., HUBERT–FERRARI, A., NALBANT, S. S., MEYER, B., ARMIJO, R. and BOWMAN, D. (2001). Coulomb interactions and the 17 August 1999 Izmit, Turkey earthquake. Earth Planet. Sci., C. R. Acad. Sci. Paris, 333, 557–569. KIRATZI, A. A., WAGNER, G. and LANGSTON, C. (1991). Source parameters of some large earthquakes in Northern Aegean determined by body waveform modeling. , 135515–527 LOUVARI, E. (2000). A detailed seismotectonic study in the Aegean Sea and the surrounding area with emphasis on the information obtained from microearthquakes. PhD Thesis, Aristotle Univ., Thessaloniki, Greece, pp. 373. MALLMAN, E. P. and ZOBACK, M. D. (2007). Assessing elastic Coulomb stress transfer models using seismicity rates in southern California and southwestern Japan. J. Geophys. Res., 112, B03304, doi:10.1029/2005JB004076. MCCLUSKY, S., BALASANIAN, S., BARKA, A., DEMIR, C., GEORGIEV, I., HAMBURGER, M., HURST, K., KAHLE, H., KASTENS, K., KEKEKIDZE, G., KING, R., KOTSEV, V., LENK, O., MAHMOUD, S., MISHIN, A., NADARIYA, M., OUZOUNIS, A., PARADISIS, D., PETER, Y., PEILEPI, M., REILINGER, R., SANLI, I., SEEGER, H., TEALEB, A., TOKSOZ, M. N. and VEIS, G. (2000). GPS constraints on crustal movements and deformations in the Eastern Mediterranean (1988–1997): Implications for plate dynamics. J. Geophys. Res., 105, 5695–5719. MCKENZIE, D. (1972). Active tectonics of the Mediterranean region. Geophys. J. R. astr. Soc., 30, 109–185. MICHAEL, A. J. (2005). Viscoelasticity, postseismic slip, fault interactions, and the recurrence of large earthquakes. Bull. Seism. Soc. Am., 95, 1594–1603. MOLCHAN, G. M. (1990). Strategies in Strong Earthquake Prediction. Phys. Earth Planet. Inter., 61, 84–98. MOLCHAN, G. M. (1991). Structure of Optimal Strategies of Earthquake Prediction. Tectonophysics, 193, 267–276. OKADA, Y. (1992). Internal deformation due to shear and tensile faults in a half–space. Bul. Seism. Soc. Am., 82, 1018–1040. PAPADIMITRIOU, E. E. (2002). Mode of strong earthquake recurrence in central Ionian Islands (Greece). Possible triggering due to Coulomb stress changes generated by the occurrence of previous strong shocks. Bull. Seismol. Soc. Am., 92, 3293– 3308. PAPADIMITRIOU, E. E. and SYKES, L. R. (2001). Evolution of the stress field in the Northern Aegean Sea (Greece). Geophys. J. Intern., 146, 747–759. PAPADIMITRIOU, E. E. and KARAKOSTAS, V. G. (2003). Episodic occurrence of strong (M>6.2) earthquakes in Thessalia area (central Greece). Earth Planet. Sci. Lett., 215, 395–409. PAPADIMITROU, E., WEN, X., KARAKOSTAS, V. and JIN, X. (2004). Earthquake triggering along the Xianshuie fault zone of western Sichuan, China. Pure Appl. Geophys., 161, 1683–1707. PAPADIMITRIOU, E. E., EVISON, F. F., RHOADES, D. A., KARAKOSTAS, V. G., CONSOLE, R., and MURRU, M. (2006). Long–term Seismogenesis in Greece: Comparison of the Evolving Stress Field and Precursory Scale Increase Approaches. J. Geophys. Res., 111, B05318, doi:10.1029/2005JB003805. PAPAZACHOS, B. C., KIRATZI, A. A., VOIDOMATIS, PH. S. and PAPAIOANNOU, CH. A. (1984). A study of the December 1981 – January 1982 seismic activity in Northern Aegean Sea. Boll. Geof. Teor. Appl., XXVI, 101–113. Parsons, T. (2002), Global Omori law decay of triggered earthquakes: Large aftershocks outside the classical aftershock zone, J. Geophys. Res., 107 (B9), 2199, doi:10.1029/2001JB000646. PARSONS, T. (2005). Significance of stress transfer in time–dependent earthquake probability calculations. J. Geophys. Res., 110, doi: 10.1029/2004JB003190. PERFETTINI, H. and AVOUAC, J.–P. (2007). Modeling afterslip and aftershocks following the 1992 Landers earthquake. J. Geophys. Res., 112, doi:10.1029/2006JB004399. POLLITZ, F. F., NYST, M., NISHIMURA, T. and THATCHER, W. (2006). Inference of postseismic deformation mechanisms of the 1923 Kanto earthquake. J. Geophys. Res., 111, B05408, doi:10.1029/2005JB003901. REILINGER, R., MCCLUSKY, S., VERNANT, PH., LAWRENCE, S., ERGIVTAV, S., CAKMAK, R., OZENER, H., KADIROV, F., GULIEV, I., STEPANYAN, R., NADARIYA, M., HAHUBIA,G., MAHMOUD, S., SAKR, K., ARRAJEHI, A., PARADISSIS, D., AL–AYDRUS, A., PRILEPIN, M., GUSEVA, T., EVREN, E., DMITROTSA, A., FILIKOV, S. V., GOMEZ, F., AL–GHAZZI, and R. KARAM, G. (2006). GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res., 111, B05411, doi:10.1029/2005JB004051. G., MAHMOUD, S., SAKR, K., ARRAJEHI, A., PARADISSIS, D., AL–AYDRUS, A., PRILEPIN, M., GUSEVA, T., EVREN, E., DMITROTSA, A., FILIKOV, S. V., GOMEZ, F., AL–GHAZZI, and R. KARAM, G. (2006). GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res., 111, B05411, doi:10.1029/2005JB004051. ROBINSON, R. and MCGINTY, P. J. (2000). The enigma of the Arthur’s Pass, New Zealand, earthquake 2. The aftershock distribution and its relation to regional and induced stress. J. Geophys. Res., 105, 16,139–16,150. ROCCA, A. CH., KARAKAISIS, G. F., KARAKOSTAS, B. G., KIRATZI, A. A., SCORDILIS, E. M. and PAPAZACHOS, B. C. (1985). Further evidence on the strike – slip faulting of the Northern Aegean Trough based on properties of the August – November 1983 seismic sequence. Boll. Geof. Teor. Appl., XXVII, 101–109. SAVAGE, J. C. (2007). Posteismic relaxation associated with transient creep rheology. J. Geophys. Res., 112, B05412, doi:10.1029/2006JB004688. STEACY, S., GOMBER, J. and COCCO, M. (2005). Introduction to special section: Stress transfer, earthquake triggering, and time–dependent seismic hazard. J. Geophys. Res., 110, B05S01, doi:10.1029/2005JB003692. STEIN, R. (1999). The role of stress transfer in earthquake occurrence. Nature, 402, 605– 609. STEIN, R. S., BARKA, A. A. and DIETERICH, J. H. (1997). Progressive failure on the North Anatolian fault since 1939 by earthquakes stress triggering. Geophys. J. Int., 128, 594–604. TAYMAZ, T., JACKSON, J. and MCKENZIE, D. (1991). Active tectonics of the north and central Aegean Sea. Geophys. J. Int., 106, 433–490. TODA, S. and STEIN, R. (2003). Toggling of seismicity by the 1997 Kagoshima earthquake couplet: A demonstration of time–dependent stress transfer. J. Geophys. Res., 108, doi:10.1029/2003JB002527. TODA, S., STEIN, R. S., RISHARDS–DINGER, K., and BOZKURT, S.B. (2005). Forecasting the evolution of seismicity in southern California: Animations built on earthquake transfer. J. Geophys. Res. 110, B05S16, doi:10.1029/2004JB003415. WELLS, D. L. and COPPERSMITH, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seism. Soc. Am., 84, 974–1002. WESSEL, P. and SMITH, W. H. F. (1998). New, improved version of the Generic Mapping Tools Released, EOS Trans. AGU, 79, 579. ZECHAR, J. D. and JORDAN, T. H. (2008). Testing Alarm–based Earthquake Predictions. Geophys. J. Int., 172, 715–724.en
dc.description.obiettivoSpecifico6T. Studi di pericolosità sismica e da maremotoen_US
dc.description.journalTypeJCR Journalen_US
dc.description.fulltextopenen
dc.contributor.authorRhoades, D. A.-
dc.contributor.authorPapadimitriou, E. E.-
dc.contributor.authorKarakostas, V. G.-
dc.contributor.authorConsole, R.-
dc.contributor.authorMurru, M.-
dc.contributor.departmentGNS Science, Lower Hutt, New Zealanden_US
dc.contributor.departmentGeophysics Department, University of Thessaloniki, GR54124 Thessaloniki, Greeceen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptInstitute of Geological and Nuclear Sciences, Lower Hutt, New Zealand-
crisitem.author.deptGeophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0003-3574-2787-
crisitem.author.orcid0000-0002-9999-6770-
crisitem.author.orcid0000-0002-7385-394X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
gin3v8_2009May08changes.pdfmain article227.42 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

10
checked on Feb 7, 2021

Page view(s) 50

215
checked on Apr 13, 2024

Download(s) 50

190
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric