Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5751
DC FieldValueLanguage
dc.contributor.authorallConsole, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMurru, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallFalcone, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2010-01-21T16:40:43Zen
dc.date.available2010-01-21T16:40:43Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/5751en
dc.descriptionWe have applied a variation of the ETAS model, which is a stochastic triggering epidemic model incorporating short-term clustering, to data collected by the New Zealand Seismological Observatory-Wellington (Geonet) for forecasting earthquakes of moderate and large magnitude in the New Zealand region.en
dc.description.abstractWe have applied a variation of the ETAS model, which is a stochastic triggering epidemic model incorporating short-term clustering, to data collected by the New Zealand Seismological Observatory-Wellington (Geonet) for forecasting earthquakes of moderate and large magnitude in the New Zealand region. The model uses earthquake data only, with no explicit use of tectonic, geologic, or geodetic information. In this epidemic-type model every earthquake is regarded, at the same time, as being triggered by previous events and triggering following earthquakes. A maximum likelihood estimate of the model parameters has been performed on the learning period from 1960 to 2005 for earthquakes of magnitude 4.0 and larger. Forecast verification procedures have been carried out in forward-retrospective way on the January 2006-April 2008 data set, making use of statistical tools as the log-likelihood ratio, the Relative Operating Characteristics (ROC) diagrams, the Molchan error diagrams, the probability gain and the R-score. These procedures show that the clustering epidemic model achieves a log-likelihood ratio per event of the order of some units, and a probability gain up to several hundred times larger than a time-independent spatially uniform random forecasting hypothesis. The results show also that a significant component of the probability gain is linked to the time-independent spatial distribution of the seismicity used in the model.en
dc.language.isoEnglishen
dc.publisher.namespringeren
dc.relation.ispartofPure and Applied Geophysicsen
dc.relation.ispartofseries6-7/167(2010)en
dc.subjectearthquake forecasting, real time forecastingen
dc.subjectepidemic modelen
dc.subjecthypothesis testingen
dc.subjecterror diagramsen
dc.titleRetrospective forecasting of M≥4.0 earthquakes in New Zealanden
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber693–707en
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.03. Forecastsen
dc.identifier.doi10.1007/s00024-010-0068-2en
dc.relation.referencesAki, K., 1981, A probabilistic synthesis of precursory phenomena. In: Earthquake Prediction, Am. Geophys. Union. Washington, p. 556-574. Baiesi, M., 2006, Scaling and precursor motifs in earthquake networks, Physica A, 360(2), 534-542. Chen, C.-C., J. B. Rundle, H.-C. Li, J. R. Holliday, K. Z. Nanjo, D. L. Turcotte, and K. F. Tiampo, 2006, From tornados to earthquakes: forecast verification for binary events applied to the 1999 Chi-Chi, Taiwan, Earthquake, Terr. Atmos. Ovean. Sci., 17, 3, 503-516. Console, R. and Murru, M., 2001, A simple and testable model for earthquake clustering, J. Geophys. Res., 106, 8699-8711. Console, R., 2001, Testing earthquake forecast hypotheses, Tectonophysics, 338, 261– 268 Console, R., Murru, M., and Lombardi, A.M., 2003, Refining earthquake clustering models, J. Geophys. Res., 108, 2468, doi: 10.1029/2002JB002130. Console, R., Murru, M., and Catalli, F., 2006a, Physical and stochastic models of earthquake clustering, Tectonophysics, 417, 141-153. Console, R., Rhoades, D.A., Murru, M., Evison, F.F., Papadimitriou, E.E. and Karakostas, V.G., 2006b, Comparative performance of time-invariant, long-range and short-range forecasting models on the earthquake catalogue of Greece, J. Geophys. Res., 111, B09304, doi:10.1029/2005JB004113. Console, R., Murru, M., Catalli, F., and Falcone, G., 2007, Real time forecasts through an earthquake clustering model constrained by the rate-and-state constitutive law: Comparison with a purely stochastic ETAS model, Seismological Research Letters, 78, 49-56. Console, R., Murru, M., and Falcone, G., 2008, Probability gains of an epidemic-type aftershock sequence model in retrospective forecasting of M≥5 earthquakes in Italy, Journal of Seismology, accepted. Console, R., Jackson, D.D., and Kagan, Y.Y., 2009, Using the ETAS model for catalog declustering and seismic background assessment, accepted for publication on Pure Appl. Geophys. (PAGEOPH), Seismogenesis and Earthquake Forecasting: The Frank Evison Volume. Daley, D. J., and Vere-Jones, D., 2003, An introduction to the Theory of Point Processes, 2-nd ed., vol. 1, Springer-Verlag, New York, p. 469. Daley, D. J., and Vere-Jones, D., 2004, Scoring probability forecasts for point processes: The entropy score and information gain, J. Appl. Prob., 41A, 297-312. Faenza, L., Hainzl, S., Scherbaum, F., and Beauval, C., 2007, Statistical analysis of time dependent earthquake occurrence and its impact on hazard in the low seismicity region Lower Rhine Embayment, Geophys. J. Int., 171, 2, 797-806. Felzer, K, R., Becker, T.W., Abercrombie, R.E., Ekstrom, G.,and Rice, J.R., 2002, Triggering of the 1999 Mw 7.1 Hector Mine earthquake by aftershocks of the 1992 Mw 7.3 Landers earthquake, J. Geophys. Res. 107(B9), 2190, doi:10.1029/2001JB000911.2002. Frankel, A., 1995, Mapping seismic hazard in the central and eastern United States, Seismol. Res. Lett., 66, 8-21. Hanssen, A.W.; and W.J.A Kuipers. (1965), On the relationship between frequency of rain and various meteorological parameters, Mededelingen en Verhandelingen, 81, 2-15. Harte, D., and Vere-Jones, D., 2005, The entropy score and its uses in earthquake forecasting, In Ben-Zion, Y, R. Zuniga, and D. Vere-Jones (Eds), Statistical Seismology, Pure and Applied Geophysics, 162, 1229-1253. Helmstetter, A., Sornette, D., 2002, Subcritical and supercritical regimes in epidemic models o earthquake aftershocks, J. Geophys. Res., 107(B10), 2237, doi:10.1029/2001JB001580. Helmstetter, A., Sornette, D., 2003, Predictability in the Epidemic-Type Aftershock Sequence model of interacting triggered seismicity, J. Geophys. Res., 108(B10), 2482, doi:10.1029/2003JB002485, 2003. Helmstetter, A., Y. Y. Kagan, and D. D. Jackson, 2006, Comparison of short-term and time-independent earthquake forecast models for southern California, Bull. Seismol. Soc. Amer., 96(1), 90-106. Holliday, J. R., K. Z. Nanjo, K. F. Tiampo, J. B. Rundle, and D. L. Turcotte , 2005, Earthquake forecasting and its verification, Nonlinear Processes in Geophysics, 12, 965-977. Imoto, M., 2004. Probability gain expected for renewal models, Earth Planets Space, 56, 561-571. Kagan, Y. Y., 1991, Likelihood analysis of earthquake catalogues, Geophys. J. Int., 106, 135-148. Kagan, Y. Y., 2002, Aftershock zone scaling, Bull. Seismol. Soc. Amer., 92(2), 641-655. Kagan, Y. Y., Bird, P., and Jackson, D. D., 2009, earthquake patterns in diverse tectonic zones of the globe, submitted to Pure Appl. Geophys. (PAGEOPH), Seismogenesis and Earthquake Forecasting: The Frank Evison Volume. Kagan, Y. Y., and Jackson, D. D., 1994, Long-term probabilistic forecasting of earthquakes, J. Geophys. Res., 99, 13,685-13,700. Kagan, Y.Y. and Jackson, D.D., 1995, New seismic gap hypothesis: five years later. J. Geophys. Res., 100, 3,943–3,959. Kagan, Y. Y., and Jackson, D. D., 2000, Probabilistic forecasting of earthquakes, Geophys. J. Int., 143, 438-453. Kagan, Y. Y., and Knopoff, L., 1977, Earthquake risk prediction as a stochastic process, Phys. Earth planet. Inter., 14 (2), 97-108. Kossobokov, V. G., 2006, Testing earthquake prediction methods: “The West Pacific short-term forecast of earthquakes with magnitude MwHRV≥5.8”, Tectonophysics, 413(1-2), 25-31. Ma, L. and Zhuang, J., 2001, Relative Quiescence within the Jiashi Swarm in Xinjiang, China: An Application of the ETAS Point Process Model, Journal of Applied Probability, Vol. 38, Probability, Statistics and Seismology , 213-221. Matthews, M. M., and Reasenberg, P. P., 1988, Statistical methods for investigating quiescence and other temporal seismicity patterns, Pure and Applied Geophysics, 126, 2-4, 357-372. McGuire, J. J., M.S. Boettcher, and Jordan, T. H., 2005, Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults, Nature, 434(7032), 457-461; Correction-Nature, 435(7041), 528. Molchan, G. M., 1990, Strategies in strong earthquake prediction, Phys. Earth Planet. Inter., 61 (1-2), 84-98. Molchan, G. M., 1997, Earthquake prediction as a decision-making problem, Pure Appl. Geophs., 149 (1), 233-247. Molchan, G. M., 2003, Earthquake prediction strategies: A theoretical analysis. In: (Keilis-Borok, V. I., and A. A. Soloviev, eds) Nonlinear Dynamics of the Lithosphere and earthquake Prediction (Springer, Heidelberg, 2003), pp. 208-237. Murru, M., Console, R., and Falcone, G., 2008, Real-time earthquake forecasting in Italy, Tectonophysics, accepted. Ogata, Y., 1998, Space–time point-process models for earthquake occurrences. Ann. Inst. Statist. Math., 50, 2, 379–402. Ogata, Y., 2001, Increased probability of large earthquakes near aftershock regions with relative quiescence, , J. Geophys. Res., 106, B5, 8729-8744. Ogata, Y., 2004a, Space-time model for regional seismicity and detection of crustal stress changes, J. Geophys. Res., 109, B3, B03308, doi:10.1029/2003JB002621. Ogata, Y., 2004b, Seismicity quiescence and activation in western Japan associated with the 1944 and 1946 great earthquakes near the Nankai trough, J. Geophys. Res., 109, B4, B04305, doi:10.1029/2003JB002634. Ogata, Y., 2005, Synchronous seismicity changes in and around the northern Japan preceding the 2003 Tokachi-oki earthquake of M8.0, J. Geophys. Res., 110, B5, B08305, doi:10.1029/2004JB003323. Ogata, Y., 2006a, Monitoring of anomaly in the aftershock sequence of the 2005 earthquake of M7.0 off coast of the western Fukuoka, Japan, by the ETAS model, Geoph. Res. Lett., 33, 1, L01303, doi:10.1029/2005GL024405. Ogata, Y., 2006b, Seismicity anomaly scenario prior to the major recurrent earthquakes off the east coast of Miyagi Prefecture, northern Japan, Tectonophysics, 424, 291-306, doi:10.1016/j.tecto.2006.03.038. Ogata, Y., 2007, Seismicity and geodetic anomalies in a wide area preceding the Niigata-Ken-Chuetsu earthquake of 23 October 2004, central Japan, J. Geoph. Res.. 112, B10301, doi:10.1029/2006JB004697. Ogata, Y., and Katsura, K., 1993, Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues, Geophys. J. Int., 113, 727-738. Ogata, Y. and Katsura, K., 2006, Immediate and updated forecasting of aftershock hazard, Geophys. Res. Lett. 33, 10, L10305, doi:10.1029/2006GL025888. Ogata, Y., Jones, L. M. and Toda, S., 2003, When and where the aftershock activity was depressed: Contrasting decay patterns of the proximate large earthquakes in southern California, J. Geophys. Res., 108, No. B6, 2318, doi:10.1029/2002JB002009 (1-12). Ogata, Y. and Zhuang, J., 2006, Space-time ETAS models and an improved extension, Tectonophysics, 413, 13-23. Rhoades, D.A. and Evison, F.F., 1989, On the reliability of precursors. Ph. Earth Plan. Int., 58, 137-140. Saichev, A., and Sornette, D., 2006, Renormalization of branching models of triggered seismicity from total to observable seismicity, Eur. Phys. J. B 51, 443-459, doi:10.1140/epjb/e2006-00242-6. Shi, Y., and Bolt, B., 1982, The standard error of the magnitude frequency b value, Bull. Seism. Soc. Am., 72, 1677-1687. Shi, Y., J. Liu, and Zhang, G., 2001, An evaluation of Chinese annual earthquake predictions, 1990-1998. J. Appl. Probab., 38A, 222-231. Vere-Jones, D., 1998, Probabilities and information gain for earthquake forecasting, Computational Seismology, 30, Geos, Moscow, 248-263. Zechar, J. D., and Jordan, T. H., 2008, Testing alarm-based earthquake predictions, Geophys. J. Int., 172, 715-724. Zhuang, J., Ogata, Y. and Vere-Jones, D., 2004, Analyzing earthquake clustering features by using stochastic reconstruction, J. Geophys. Res, 109, B5, B05301, doi:10.1029/2003JB002879. Zhuang, J., Chang, C., Ogata, Y. and Chen, Y., 2005, A study on the background and clustering seismicity in the Taiwan region by using point process models, J. Geophys. Res., 110, B5, B05S18, doi:10.1029/2004JB003157.en
dc.description.obiettivoSpecifico3T. Sorgente sismicaen
dc.description.obiettivoSpecifico6T. Studi di pericolosità sismica e da maremotoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorConsole, R.en
dc.contributor.authorMurru, M.en
dc.contributor.authorFalcone, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-7385-394X-
crisitem.author.orcid0000-0002-2554-4421-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Console_et_al_Pageoph_Evison_Symposium_rev1_vMCG_accepted-4.pdfmain article1.88 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 20

7
checked on Feb 10, 2021

Page view(s)

154
checked on Mar 27, 2024

Download(s) 20

319
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric