Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/559
DC FieldValueLanguage
dc.contributor.authorallLombardo, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBuongiorno, M. F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallPieri, D.; Jet Propulsion Laboratory, Earth and Space Sciences Division, 4800 Oak Grove Drive, Pasadena, CA 91109, USAen
dc.contributor.authorallMerucci, L.; a Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Roma, Italyen
dc.date.accessioned2005-11-24T13:29:40Zen
dc.date.available2005-11-24T13:29:40Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/559en
dc.description.abstractAbstract The simultaneous solution of the Planck equation (the so-called ‘‘dual-band’’ technique) for two shortwave infrared Landsat Thematic Mapper (TM) bands allows an estimate of the fractional area of the hottest part of an active flow and the temperature of the cooler crust. Here, the dual-band method has been applied to a time series of Mount Etna eruptions. The frequency distribution of the fractional area of the hottest component reveals specific differences between summit and flank lava flows. The shape of the density function shows a trend consistent with a Gaussian distribution and suggests a relationship between the moments of the distribution and the emplacement environment. Because flow composition of Etnean lavas generally remains constant during the duration of their emplacement, it appears that the shape of any particular frequency distribution is probably related to fluid mechanical aspects of flow emplacement that affect flow velocity and flow heat loss and thus the rate of formation of the surface crust. These factors include the influence of topographical features such as changes in slope gradient, changes in volume effusion rate, and progressive downflow increases in bulk or effective viscosity. A form of the general theoretical solution for the ‘dual-band’ system, which illustrates the relationship between radiance in TM bands 5 and 7, corresponding to hot fractional area and crust temperature, is presented. Generally speaking, it appears that for a given flow at any point in time, larger fractional areas of exposed hot material are correlated with higher temperatures and that, while the overall shape of that distribution is common for the flows studied, its amplitude and slope reflect individual flow rheological regimes.en
dc.format.extent2003775 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries/134(2004)en
dc.subjectLandsat TM;en
dc.subjectthermal structures;en
dc.subjectMount Etnaen
dc.titleDifferences in Landsat TM derived lava flow thermal structures during summit and flank eruption at Mount Etnaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber(15-34)en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.identifier.doidoi:10.1016/j.jvolgeores.2003.12.006en
dc.relation.referencesReferences Archambault, C., Tanguy, J.C., 1976. Comparative temperature measurements on Mount Etna lavas: problems and techniques. Journal of Volcanology and Geothermal Research 1, 113– 125. Armienti, P., Clocchiatti, R., D’Orazio, M., Innocenti, F., Petrini, R., Pompilio, M., Tonarini, S., Villari, L., 1994. The long standing 1991 – 1993 Mount Etna eruption: petrography and geochemistry of lavas. Acta Vulcanologica 4, 15–28. Barberi, F., Villari, L., 1994. Volcano monitoring and civil protection problems during the 1991– 1993 Etna eruption. Acta Vulcanologica V.4, 157– 166. Barberi, F., Carapezza, M.L., Valenza, M., Villari, L., 1993. The control of lava flow during the 1991– 1992 eruption of Mt. Etna. Journal of Volcanology and Geothermal Research 56, 1– 34. Borgia, A., Linneman, S., Spencer, D., Morales, L., Andre, L., 1983. Dynamics of the flow fronts, Arenal volcano, Costa Rica. Journal of Volcanology and Geothermal Research 19, 303–329. Calvari, S., Coltelli, M., Neri, M., Pompilio, M., Scribano, V., 1994. The 1991 – 1993 Etna eruption: chronology and geological observations. Acta Vulcanologica V.4, 1– 14. Chiarabba, C., Amato, A., Boschi, E., Barberi, F., 2000. Recent seismicity and tomographic modeling of the Mount Etna plumbing system. Journal of Geophysical Research 105, 10923–10938. Crisp, J., Baloga, S., 1990. A model for lava flows with two thermal componets. Journal of Geophysical Research 95, 1255–1270. Dozier, J., 1981. A method for satellite identification of surface temperature fields of subpixel resolution. Journal of Remote Sensing and Environment 11, 221– 229. Dragoni, M., 1989. A dynamic model of lava flows cooling by radiation. Bulletin Volcanologique 51, 88– 95. Fink, J.H., Griffiths, R.W., 1992. A laboratory analogue study of a surface morphology of lava flows extruded from point and line sources. Journal of Volcanology and Geothermal Research 54, 19–32. Flynn, L.P., Mouginis-Mark, P.J., Gradie, J.C., Lucey, P.G., 1993. Radiative themperature measurements at Kupaianaha lava lake, Kilauea volcano, Hawaii. Journal of Geophysical Research 98 (B4), 6461–6476. Flynn, L.P., Mouginis-Mark, P.J., Horton, K.A., 1994. Distribution of thermal areas on an active lava flow field: Landsat observations of Kilauea, Hawaii, July 1991. Bulletin Volcanologique 56, 284– 296. Flynn, L.P., Harris, A.J.L., Rothery, R.D.A., Oppenheimer, C., 2000. High-Spatial resolution thermal remote sensing of active volcanic features using Landsat and hyperspectral data. Remote Sensing of Active Volcanism, AGU Geophysical Monograph Series 116, 161– 177. Flynn, L.P., Harris, A.J.L., Wright, R., 2001. Improved identification of volcanic features using Landsat 7 ETM+ . Remote Sensing of Environment 78, 180– 193. Gauthier, F., 1973. Field and laboratory studies of the rheology of Mount Etna lava. Philosophical Transactions of the Royal Society of London 274, 83– 98. Glaze, L., Francis, P.W., Rothery, D.A., 1989. Measuring thermal budgets of active volcanoes by satellite remote sensing. Nature 338, 144– 146. Global Volcanism Network (GVN), 1984a. Etna, Smithson. Inst. Bull. Global Volcan. Network, 06/84 (SEAN 09:06). Global Volcanism Network (GVN), 1984b. Etna, Smithson. Inst. Bull. Global Volcan. Network, 06/84 (SEAN 09:06). Global Volcanism Network (GVN), 1984c. Etna, Smithson. Inst. Bull. Global Volcan. Network, 05/84 (SEAN 09:05). Global Volcanism Network (GVN), 1984d. Etna, Smithson. Inst. Bull. Global Volcan. Network, 04/84 (SEAN 09:04). Global Volcanism Network (GVN), 1991. Etna, Smithson. Inst. Bull. Global Volcan. Network, 12/91 (BGVN 16:12). Global Volcanism Network (GVN), 1992a. Etna, Smithson. Inst. Bull. Global Volcan. Network, 08/92 (BGVN 17:08). Global Volcanism Network (GVN), 1992b. Etna, Smithson. Inst. Bull. Global Volcan. Network, 02/92 (BGVN 17:02). Global Volcanism Network (GVN), 1992c. Etna, Smithson. Inst. Bull. Global Volcan. Network, 01/92 (BGVN 17:01). Global Volcanism Network (GVN), 1993. Etna, Smithson. Inst. Bull. Global Volcan. Network, 03/93 (BGVN 18:03). Global Volcanism Network (GVN), 1996. Etna, Smithson. Inst. Bull. Global Volcan. Network, 07/96 (BGVN 21:07). Global Volcanism Network (GVN), 1999. Etna, Smithson. Inst. Bull. Global Volcan. Network, 06/99 (BGVN 24:06). Gregg, T.K.P., Fink, J.H., 2000. A laboratory investigation into the effects of slope on lava flow morphology. Journal of Volcanology and Geothermal Research 96, 145– 159. Harris, A.J.L., Blake, S., Rothery, D.A., 1997. A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: implication for real-time thermal volcano monitoring. Journal of Geophysical Research 102, 7985– 8003. Harris, A.J.L., Flynn, L.P., Keszthelyi, L., Mouginis-Mark, P.J., Rowland, S.K., Resing, J.A., 1998. Calculation of lava effusion rates from Landsat TM data. Bulletin Volcanologique 60, 52– 71. Harris, A.J.L., Flynn, L.P., Rothery, D.A., Oppenheimer, C., Sherman, S.B., 1999. Mass flux measurements at active lava lakes: implications for magma recycling. Journal of Geophysical Research 104, 7117– 7136. Harris, A.J.L., Flynn, L.P., Dean, K., Pilger, E., Wooster, M.J., Okubo, C., Mouginis-Mark, P.J., Garbeil, H., Thornbern, C., De la Cruz-Reyna, S., Rothery, D.A., Wright, R., 2000a. Real-time monitoring of volcanic hot-spots with satellites. Remote Sensing of Active Volcanism, AGU Geophysical Monograph Series 116, 139– 159. Harris, A.J.L., Murray, J.B., Aries, S.E., Davies, M.A., Flynn, L.P., Wooster, M.J., Wright, R., Rothery, D.A., 2000b. Effusion rate trends at Etna and Krafta and their implications for eruptive mechanisms. Journal of Volcanology and Geothermal Research 102, 237–269. Kilburn, C.R.J., 1990. Surface of aa flow-fields on Mt. Etna, Sicily: morphology, rheology, crystallization and scaling phenomena. In: Fink, J.H. (Ed.), IAVCEI Proceedings in Volcanology, vol. 2: Lava Flows and Domes—Emplacement Mechanisms and Hazard Implications. Springer, Berlin, pp. 129– 156. Kilburn, C.R.J., 1993. Lava crusts, aa flow lengthening and the pahoehoe – aa transition. In: Kilburn, C.R.J., Luongo, G. (Eds.), Active Lavas: Monitoring and Modelling. UCL Press, London, pp. 263–280. Lange, R.A., 1994. Diffusion in volatile-bearing magmas. In: Carroll, M.R., Holloway, J.R. (Eds.), Volatiles in Magmas. Reviews in Mineralogy, vol. 30. Mineral. Soc. Am., Washington DC, pp. 331– 369. Metrich, N., Allard, P., Andronico, D., 2002. Preliminary constraints on volatile abundances in basalts erupted during the 2001 flank eruption on Mount Etna. Geophysical Research Abstract, vol. 4, 27th General Assembly, EGS, Nice 2000 (EGS02- A-06200). Montone, P., Amato, A., Pondrelli, S., 1999. Active stress map of Italy. Journal of Geophysical Research 104 (B11), 25–595. Murru, M., Montuori, C., Wyss, M., Privitera, E., 1999. The location of the magma chambers at Mt. Etna, Italy, mapped by b values. Geophysical Research Letters 26, 2553–2556. Oppenheimer, C., 1991. Lava flow cooling estimated from Landsat Thematic Mapper infrared data: the Lonquimay eruption (Chile, 1989). Journal of Geophysical Research 96, 21865– 21878. Oppenheimer, C., 1993a. Infrared surveillance of crater lakes using satellite data. Journal of Volcanology and Geothermal Research 55, 117– 128. Oppenheimer, C., 1993b. Thermal distributions of hot volcanic surfaces constrained using three infrared bands of remote sensing data. Geophysical Research Letters 20 (6), 431– 434. Oppenheimer, C., 1998. Satellite observation of active carbonatite volcanism at Ol Dionyo Lengai, Tanzania. International Journal of Remote Sensing 19, 55–64. Oppenheimer, C., Francis, P.W., Rothery, D.A., Carlton, R.W.T., Glaze, L., 1993a. Infrared image analysis of volcanic thermal features: La`scar Volcano, Chile, 1984– 1992. Journal of Geophysical Research 98, 4269– 4286. Oppenheimer, C., Rothery, D.A., Francis, P.W., 1993b. Thermal distribution at fumarole fields: implications for infrared remote sensing of active volcanoes. Journal of Volcanology and Geothermal Research 55, 97–115. Oppenheimer, C., Rothery, D.A., Pieri, D.C., Abrams, M.J., Carrere, V., 1993c. Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of volcanic hot spots. International Journal of Remote Sensing 14 (16), 2919–2934. Pieri, D.C., Buongiorno, M.F., in prep. Systematic summit crater radiance increase as seen in Landsat TM data before the 1991– 93 eruption on Mt. Etna. Under review. Journal of Volcanology and Geothermal Research. Pieri, D.C., Glaze, L.S., Abrams, M.J., 1990. Thermal radiance observation of an active lava flow during the June 1984 eruption of Mt. Etna. Geology 18, 1018–1022. Pinkerton, H., Stevenson, R.J., 1992. Methods of determining the rheological properties of magmas at sub-liquidus temperatures. Journal of Volcanology and Geothermal Research 53, 47– 66. Rittmann, A., Romano, R., Sturiale, C., 1973. Some considerations on the 1971 Etna eruption and on the tectonophysics of the Mediterranean area. Geologische Rundschau 62, 418– 430. Romano, R., Sturiale, C., 1982. The historical eruptions of Mount Etna (volcanological data). Memorie della Societa Geologica Italiana 23, 75– 97. Romano, R., Vaccaro, C., 1986. The recent eruptive activity on Mt. Etna Sicily, 1981–1985. Periodico di Mineralogia 55, 91– 111. Rothery, D.A., Francis, P.W., Wood, C.A., 1988. Volcano monitoring using short wavelength infrared data from satellite. Journal of Geophysical Research 93, 7993– 8008. Rothery, D.A., Borgia, A., Carlton, R.W., Oppenheimer, C., 1992. The 1992 Etna lava flow imaged by Landsat TM. International Journal of Remote Sensing 13, 2759– 2763. Trigila, R., Spera, F.J., Aurisicchio, C., 1990. The 1983 Mount Etna eruption: thermochemical and dynamical inferences. Contributions to Mineralogy and Petrology 104, 594–608. Wadge, G., 1978. Effusion rate and the shape of aa lava flow-fields on Mount Etna. Geology 6, 503– 506. Walker, G.P.L., 1973. Lenght of lava flows. Philosophical Transactions of the Royal Society of London. A 274, 107– 118. Watson, E.B., 1994. Diffusion in volatile-bearing magmas. In: Carroll, M.R., Holloway, J.R. (Eds.), Volatiles in Magmas. Reviews in Mineralogy, vol. 30. Mineral. Soc. Am., Washington DC, pp. 372– 411. Wooster, M.J., Kaneko, T., Nakada, S., Shimizu, H., 2000. Discimination of lava dome activity styles using satellite-derived thermal structurs. Journal of Volcanology and Geothermal Research 102, 97– 118. Wright, R., Flynn, P.F., Harris, A.J.L., 2001. Evolution of lava flow-fields at Mount Etna, 27–28 October 1999, observed by Landsat 7 ETM+ . Bulletin Volcanologique 63, 1– 7.en
dc.description.fulltextreserveden
dc.contributor.authorLombardo, V.en
dc.contributor.authorBuongiorno, M. F.en
dc.contributor.authorPieri, D.en
dc.contributor.authorMerucci, L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentJet Propulsion Laboratory, Earth and Space Sciences Division, 4800 Oak Grove Drive, Pasadena, CA 91109, USAen
dc.contributor.departmenta Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Roma, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptJet Propulsion Laboratory-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-3231-9636-
crisitem.author.orcid0000-0002-6095-6974-
crisitem.author.orcid0000-0001-6910-8800-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Lombardo 05090512470803970.pdf1.96 MBAdobe PDF
Show simple item record

Page view(s) 50

243
checked on Mar 27, 2024

Download(s)

26
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric