Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/558
DC FieldValueLanguage
dc.contributor.authorallLombardo, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallBuongiorno, M. F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallAmici, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2005-11-24T13:21:47Zen
dc.date.available2005-11-24T13:21:47Zen
dc.date.issued2006-
dc.identifier.urihttp://hdl.handle.net/2122/558en
dc.description.abstractAbstract: The simultaneous solution of the Planck equation (involving the widely used “dual-band” technique) using two shortwave infrared (SWIR) bands allows for an estimate of the fractional area of the hottest part of an active lava flow (fh), and the background temperature of the cooler crust (Tc). The use of a high spectral and spatial resolution imaging spectrometer with a wide dynamic range of 15 bits (DAIS 7915) in the wavelength range from 0.501 to 12.67 µm resulted in the identification of crustal temperature and fractional areas for an intra-crater hot spot at Mount Etna, Italy. This study indicates the existence of a relationship between these Tc and fh extracted from DAIS and Landsat TM data. When the dual band equation system is performed on a lava flow, a logarithmic distribution is obtained from a plot of the fractional area of the hottest temperature versus the temperature of the cooler crust. An entirely different distribution is obtained over active degassing vents, where increases in Tc occur without any increase in fh. This result indicates that we can use scatter plots of Tc vs. fh to discriminate between different types of volcanic activity, in this case between degassing vents and lava flows, using satellite thermal data.en_US
dc.format.extent1347669 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen_US
dc.publisher.nameSpringeren_US
dc.relation.ispartofBulletin of Volcanologyen_US
dc.relation.ispartofseries/68 (2006)en_US
dc.subjectMount Etnaen_US
dc.subjectremote-sensingen_US
dc.subjectlava-flowen_US
dc.subjectdegassing venten_US
dc.titleCharacterization of volcanic thermal anomalies by means of sub-pixel temperature distribution analysisen_US
dc.typearticleen_US
dc.description.statusPublisheden_US
dc.description.pagenumber641–651en_US
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen_US
dc.identifier.doi10.1007/s00445-005-0037-2en_US
dc.relation.referencesReferences Archambault C, JC Tanguy (1976) Comparative temperature measurements on Mount Etna lavas: problems and techniques. J Volcanol Geotherm Res 1 : 113-125 Crisp J, S Baloga (1990) A model for lava flows with two thermal components. J Geophys Res 95: 1255-1270 Calvari S, Coltelli M, Neri M, Pompilio M, Scribano V (1994) The 1991-1993 Etna eruption: chronology and geological observations. Acta Vulcanol 4: 1-14 Dozier J (1981) A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sensing Environ 11:221-229 Flynn LP, Harris AJL, Wright R (2001) Improved identification of volcanic features using Landsat 7 ETM+. Remote Sensing Environ 78:180-193 Flynn LP, Harris AJL, Rothery DA, Oppenheimer C (2000) High-Spatial resolution thermal remote sensing of active volcanic features using Landsat and hyperspectral data. In: Mouginis-Mark PJ, Crisp JA, Fink JH (eds) Remote Sensing of Active Volcanism. AGU Monograph 116: 161-177 Flynn LP, Mouginis-Mark PJ, Horton KA (1994) Distribution of thermal areas on an active lava flow field: Landsat observations of Kilauea, Hawaii, July 1991. Bull Volcanol 56: 284-296 Gauthier F (1973) Field and laboratory studies of the rheology of Mount Etna lava. Philos Trans Roy. Acad Lond 274: 83-98 Glaze L, Francis PW, Rothery DA (1989) Measuring thermal budgets of active volcanoes by satellite remote sensing. Nature 338: 144-146 GVN (1999) Etna. Smithsonian Institution Bull. Global Volcanol Net 24(06) GVN (1998) Etna. Smithsonian Institution Bull. Global Volcanol Net 23(11) GVN (1997) Etna. Smithsonian Institution Bull. Global Volcanol Net 22(07) GVN (1996a) Etna. Smithsonian Institution Bull. Global Volcanol Net 21(07) GVN (1996b) Etna. Smithsonian Institution Bull. Global Volcanol Net 21(06) Harris AJL, Pilger E, Flynn LP, Garbeil H, Mouginis-Mark PJ, Kauahikaua J, Thornber C (2001) Automated, high temporal resolution, thermal analysis of Kilauea volcano, Hawaii, using GOES satellite data. Int J Remote Sensing 22(6): 945-967 Harris AJL, Murray JB, Aries SE, Davies MA, Flynn LP, Wooster MJ, Wright R, Rothery DA (2000b) Effusion rate trends at Etna and Krafta and their implications for eruptive mechanisms. J Volcanol Geotherm Res 102: 237-269 Harris AJL, Flynn LP, Dean K, Pilger E, Wooster MJ, Okubo C, Mouginis-Mark PJ, Garbeil H, Thornbern C, De la Cruz-Reyna S, Rothery DA, and Wright R, (2000a) Real-time monitoring of volcanic hot-spots with satellites. Remote Sensing of Active Volcanism AGU Geophysical Monograph Series 116: 139-159 Harris AJL, Flynn LP, Rothery DA, Oppenheimer C, Sherman SB (1999) Mass flux measurements at active lava lakes: implications for magma recycling. J Geophys Res 104: 7117-7136 Harris AJL, Flynn LP, Keszthelyi L, Mouginis-Mark PJ, Rowland SK, Resing, JA (1998) Calculation of lava effusion rates from Landsat TM data. Bull Volcanol 60: 52-71 Harris AJL, Blake, S, Rothery DA (1997) A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: Implication for real-time thermal volcano monitoring. J of Geophys Res 102: 7985-8003 Harris AJL, Buongiorno MF, Pieri DC, Rothery DA, Stevens NF (1996) Mount Etna: The view from above. In: Cheltenham and Glauchester Proceedings of Etna: Fifteen Years On. Cheltenham, pp 40-96 Harris AJL, (1996b) Low spatial resolution thermal monitoring of volcanoes from space. PhD thesis, Open University, Milton Keines Harris AJL, Rothery DA, Carlton RW, Langaas S, and Mannstein H (1995) Non-zero saturation of AVHRR thermal channels over high temperature targets: Evidence from volcano data and a possible explanation. Int J Remote Sensing 16(1): 189-196 Harris AJL, Swabey SEJ, and Higgins J (1995b) Automated thresholding of active lavas using AVHRR data. Int J Remote Sensing 16(18): 3681-3686 Horne R, Papathanassiou KP, Reigber A, Hausknecht P, Strobl P, Boehl R, Scheele, M, Reulke, R, Baerwald W, Puglisi G, Coltelli M, Fornaro G (1997) The Mount Etna case study: a multisensor view. 3rd International Airborne Remote Sensing Conference and Exhibition, Copenhagen, 7 – 10 July 1997 Lombardo V, Buongiorno MF, Merucci L, Pieri DC (2004) Differences in Landsat TM derived lava flow thermal structure during summit and flank eruption at Mount Etna. J Volcanol Geotherm Res 134/1-2:15-3411 Matson M and Dozier J (1981) Identification of subresolution high temperature sources using a thermal IR sensor. Photogramm Eng Remote Sensing 47(9):1311-1318 Mouginis-Mark PJ, Garbeil H, Flament P (1994) Effects of viewing geometry on AVHRR observation of volcanic thermal anomalies. Remote Sensing Environ 48: 51-60 Oppenheimer C (1998) Satellite observation of active carbonatite volcanism at Ol Dionyo Lengai, Tanzania. Int J Remote Sensing 19: 55-64 Oppenheimer C, Francis PW (1997) Remote sensing of heat, lava, and fumarole emissions from Erta ‘Ale Volcano, Ethiopia. Int J Remote Sensing 18: 1661-1692 Oppenheimer C (1997) Remote sensing of colour and temperatures of volcanic lakes. Int J Remote Sensing 18: 3-37 Oppenheimer C (1997) Crater lake heat losses estimated using remote sensing. Geophys Res Lett 23: 1793-1796 Oppenheimer C, Francis PW, Rothery DA, Carlton, RWT, Glaze L (1993) Infrared image analysis of volcanic thermal features: Làscar Volcano, Chile, 1984-1992. J Geophys Res 98: 4269-4286 Oppenheimer C, Rothery DA, Francis PW (1993) Thermal distribution at fumarole fields: implications for infrared remote sensing of active volcanoes. J Volcanol Geotherm Res 55: 97-115 Oppenheimer C, Rothery DA, Pieri DC, Abrams MJ, Carrere V (1993) Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of volcanic hot spots. Int J Remote sensing 14(16): 2919-2934 Oppenheimer C (1993) Infrared surveillance of crater lakes using satellite data. J Volcanol Geotherm Res 55: 117-128 Oppenheimer C (1993) Thermal distributions of hot volcanic surfaces constrained using three infrared bands of remote sensing data. Geophys Res Lett 20(6): 431-434 Oppenheimer C (1991) Lava flow cooling estimated from Landsat Thematic Mapper infrared data: The Lonquimay eruption (Chile, 1989). J Geophys Res 96: 21865-21878 Oppenheimer C, Rothery DA (1991) Infrared monitoring of volcanoes by satellite. J Geol Soc Lond 148: 563-569 Pieri DC, Glaze LS, Abrams MJ (1990) Thermal radiance observation of an active lava flow during th June 1984 eruption of Mt. Etna. Geology 18: 1018-1022 Rothery DA, Oppenheimer C, Bonneville A (1995) Infrared thermal monitoring. In: McGuire B, Kilburn CRJ, Murray J (ed) Monitoring Active Volcanoes, UCL Press, pp 184-216 Rothery DA, Borgia A, Carlton RW, Oppenheimer C (1992) The 1992 Etna lava flow imaged by Landsat TM. Int J Remote Sensing 13: 2759-2763 Rothery DA (1992) Monitoring and warming of volcanic eruptions by remote sensing. In: McCall GJH, Laming DJC, and Scott SC (ed) Geohazards-Natural and Man-Made, Chapman and Hall, New York, pp 25-32 Rothery DA, Francis PW, Wood CA (1988) Volcano monitoring using short wavelength infrared data from satellite. J Geophys Res 93: 7993-8008 Swanson DA, Duffield WA, Jackson DB, Peterson DW (1979) Chronological narrative of the 1969-71 Mauna Ulu eruption of Kilauea volcano, Hawaii. Geol Surv Prof Pap: 1056, pp 1-55 Tanguy, JC (1973) The 1971 Etna eruption: Petrography of lavas. Philos Trans Roy Soc London 274: 45-53 Wan Z, Dozier J (1989) Land-surface temperature measurement from space: physical principles and inverse modelling. IEEE T Geosci Remote Sensing 27: 268-277 Wooster MJ, Kaneko T, Nakada S, Shimizu H (2000) Discimination of lava dome activity styles using satellite-derived thermal structurs. J Vulcanol Geotherm Res 102: 97-118 Wooster MJ, Rothery DA (1997a) Time series analysis of effusive volcanic activity using the ERS along track scanning radiometer: The 1995 eruption of Fernandina volcano, Galapagos Island. Remote Sens Environ 69: 109-117 Wooster MJ, Rothery DA (1997b) Thermal of Lascar volcano, Chile using infrared data from the along track scanning radiometer: A 1992-1995 time series. Bull Volcanol 58: 566-579 Wright R, Flynn PF, Harris AJL (2001) Evolution of lava flow-fields at Mount Etna, 27-28 October 1999, observed by Landsat 7 ETM+. Bull Volcanol 63: 1-7 Wright R., Rothery DA, Blake S, Pieri DC (2000) Improved remote sensing estimates of lava flow cooling: a case study of the 1991-1993 Mount Etna eruption. J Geophys Res 105:681-23en_US
dc.description.obiettivoSpecifico4V. Processi pre-eruttivien_US
dc.description.journalTypeJCR Journalen_US
dc.description.fulltextopenen
dc.relation.issn0258-8900en_US
dc.contributor.authorLombardo, V.-
dc.contributor.authorBuongiorno, M. F.-
dc.contributor.authorAmici, S.-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-3231-9636-
crisitem.author.orcid0000-0002-6095-6974-
crisitem.author.orcid0000-0003-2410-646X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Lombardo.pdf1.32 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

14
checked on Feb 10, 2021

Page view(s)

386
checked on Apr 17, 2024

Download(s) 20

567
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric