Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5527
DC FieldValueLanguage
dc.contributor.authorallMollo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallGaeta, M.; Dipartimento di Scienze della Terra, Sapienza Università di Roma. P.le Aldo Moro 5 00176 Rome Italyen
dc.contributor.authorallFreda, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDi Rocco, T.; Dipartimento di Scienze della Terra, Sapienza Università di Roma. P.le Aldo Moro 5 00176 Rome Italyen
dc.contributor.authorallMisiti, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallScarlato, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2010-01-11T14:08:32Zen
dc.date.available2010-01-11T14:08:32Zen
dc.date.issued2010-
dc.identifier.urihttp://hdl.handle.net/2122/5527en
dc.description.abstractThe main effect of magma-carbonate interaction on magma differentiation is the formation of a silica-undersaturated, alkali-rich residual melt. Such a desilication process was explained as the progressive dissolution of CaCO3 in melt by consumption of SiO2 and MgO to form diopside sensu stricto. Magma chambers emplaced in carbonate substrata, however, are generally associated with magmatic skarns containing clinopyroxene with a high Ca-Tschermak activity in their paragenesis. Data are presented from magma-carbonate interaction experiments, demonstrating that carbonate assimilation is a complex process involving more components than so far assumed. Experimental results show that, during carbonate assimilation, a diopside-hedenbergite-Ca-Tschermak clinopyroxene solid solution is formed and that Ca-Tschermak/diopside and hedenbergite/diopside ratios increase as a function of the progressive carbonate assimilation. Accordingly, carbonate assimilation reaction should be written as follows, taking into account all the involved magmatic components: CaCO3solid+SiO2melt+MgOmelt+FeOmelt+Al2O3melt → (Di-Hd-CaTs)sssolid+CO2fluid The texture of experimental products demonstrates that carbonate assimilation produces three-phases (solid, melt, and fluid) whose main products are: i) diopside-hedenbergite-Ca-Tschermak clinopyroxene solid solution; ii) silica-undersaturated CaO-rich melt; and iii) C-O-H fluid phase. The silica undersaturation of the melt and, more importantly, the occurrence of a CO2-rich fluid phase, must be taken into account as they significantly affect partition coefficients and the redox state of carbonated systems, respectively.en
dc.description.sponsorshipTRIGS Project “Sixth Framework Programme of the European Commission and to the New and Emerging Science and Technology Pathfinder". Project FIRB MIUR “Development of innovative technologies for the environmental protection from natural events”.en
dc.language.isoEnglishen_US
dc.publisher.nameElsevieren_US
dc.relation.ispartofLithosen_US
dc.relation.ispartofseries3-4/114(2010)en_US
dc.subjectcarbonate assimilationen
dc.subjectskarnsen
dc.titleCarbonate assimilation in magmas: a reappraisal based on experimental petrologyen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber503-514en_US
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.identifier.doi10.1016/j.lithos.2009.10.013en_US
dc.relation.referencesBarnes, C., Prestvik, T., Sundvoll, B., Surratt, D. 2005. Pervasive assimilation of carbonate and silicate rocks in the Hortavaer igneous complex, north-central Norway. Lithos 80, 179-199. Beard, J.S., Ragland, P.C., Crawford, M.L., 2005. Reactive bulk assimilation: A model for crustal-mantle mixing in silicic magmas. Geology 33, 681-684. Behrens, H., Misiti, V., Freda, C., Vetere, F., Botcharnikov, R.E., Scarlato, P., 2009. Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250 °C and pressure from 50 to 500 MPa. American Mineralogist 94, 105-120. Botcharnikov, R.E., Freise, M., Holtz, F., Behrens, H., 2005a. Solubility of C-O-H mixtures in natural melts: new experimental data and application range of recent models. Annals of Geophysics 48, 633–646. Botcharnikov, R.E., Holtz, F., Behrens, H., Freise, M., 2005b. The effect of redox state on the solubility of C-O-H fluids in silicate melts: new experimental evidences. EGU05-A-09237. Carmichael, I.S.E., Ghiorso, M.S., 1990. The effect of oxygen fugacity on the redox state of natural liquids and their crystallizing phases. In Nicholls, J. and Russel, J.K. (ed.) Modern Methods of Igneous Petrology: Understanding Magmatic Process. Review in Mineralogy 24, 191-211. Chadwick, J.P., Troll, V.R., Ginibre, C., Morga, D., Gertisser, R., Waight, T.E., Davidson, J.P., 2007. Carbonate assimilation at Merapi Volcano, Java, Indonesia: insights from crystal isotope stratigraphy. Journal of Petrology 48, 1793-1812. Cheadle, M.J., Elliott, M.T., McKenzie, D., 2004. Percolation threshold and permeability of crystallizing igneous rocks: the importance of textural equilibrium. Geology 32, 757-760. Coulson, I.M., Westphal, M., Anderson, R.G., Kyser, T.K., 2007. Concomitant skarn and syenitic magma evolution at the margins of the Zippa Mountain pluton. Mineralogy and Petrology 90, 199-221. Conte, A.M., Dolfi, D., Gaeta, M., Misiti, V, Mollo, S., Perinelli, C. 2009. Experimental constraints on evolution of leucite-basanite magma at 1 and 10-4 GPa: implications for parental compositions of Roman high-potassium magmas. European Journal of Mineralogy, DOI: 10.1127/0935-1221/2009/0021-1934. Dallai, L., Freda, C., Gaeta, M., 2004. Oxygen isotope geochemistry of pyroclastic clinopyroxene monitors carbonate contributions to Roman-type ultrapotassic magmas. Contributions to Mineralogy and Petrology 148, 247-263. Falloon, T.J., Green, D.H., O’Neill H.St.C., Hibberson, W.O., 1997. Experimental tests of low degree peridotite partial melt compositions: Implications for the nature of anhydrous near-solidus peridotite melts at 1 GPa. Earth and Planetary Science Letters 152, 149-162. Freda, C., Gaeta, M., Misiti., V., Mollo, S., Dolfi, D., Scarlato, P., 2008. Magma–carbonate interaction: An experimental study on ultrapotassic rocks from Alban Hills (Central Italy). Lithos 101, 397-415. Fulignati, P., Marianelli, P., Santacroce, R., Sbrana, A., 2004. Probing the Vesuvius magma chamber-host rock interface through xenoliths. Geological Magazine 141, 417-428. Gaeta, M., Di Rocco, T., Freda, C., 2009. Carbonate Assimilation in Open Magmatic Systems: the Role of Melt-bearing Skarns and Cumulate-forming Processes. Journal of Petrology 50, 361-385. Gaeta, M., Freda, C., Christensen, J.N., Dallai, L., Marra, F., Karner, D.B., Scarlato, P., 2006. Time-dependent geochemistry of clinopyroxene from Alban Hills (Central Italy): clues to source and evolution of ultrapotassic magmas. Lithos 86, 330-346. Gee, L.L., Sack, R.O., 1988. Experimental petrology of melilite nephelinites. Journal of Petrology 29, 1233-1255. Holness, M.B., 2005. Melt-Solid Dihedral Angles of Common Minerals in Natural Rocks. Journal of Petrology 47, 791-800. Iacono Marziano, G., Gaillard, F., Pichavant, M., 2008. Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes. Contributions to Mineralogy and Petrology 155, 719-738. Kadik, A., Pineau, F., Litvin, Y., Jendrzejewski, N., Martinez, I., Javoy, M., 2004. Formation of carbon and hydrogen species in magmas at low oxygen fugacity. Journal of Petrology 45, 1297-1310. Kamenetsky, V., Metrich, N., Cioni, R., 1995. Potassic primary melts of Vulsini (Roman Province): evidence from mineralogy and melt inclusions. Contributions to Mineralogy and Petrology 120, 186-196. Kawamoto, T., Hirose, K., 1994. Au–Pd sample containers of melting experiments on iron and water-bearing systems. European Journal of Mineralogy 6, 381-385. Kerrick, D.M., 1977. The genesis of zoned skarns in the Sierra Nevada, California. Journal of Petrology 18, 144-181. Kress, V.C., Carmichael, I.S.E., 1991. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology 108, 82-92. Kushiro, I., 1990. Partial melting of mantle wedge and evolution of island arc crust. Journal of Geophysical Research 95, 15929-15939. Kushiro, I., Mysen, B.O., 2002. A possible effect of melt structure on the Mg–Fe2+ partitioning between olivine and melt. Geochimica et Cosmochimica Acta 66, 2267-2272 Kushiro, I., Walter, M.J., 1998. Mg–Fe partitioning between olivine and mafic-ultramafic melts. Geophysical Research Letters 25, 2337-2340. Longhi, J., Walker, D., Hays, J.F., 1978. The distribution of Fe and Mg between olivine and lunar basaltic liquids. Contributions to Mineralogy and Petrology 42, 1545–1558. Nimis, P., 1995. A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Contributions to Mineralogy and Petrology 121, 115-125. Nimis, P., Ulmer, P., 1998. Clinopyroxene geobarometry of basic magmas: An expanded structural geobarometer for anhydrous and hydrous systems. Contributions to Mineralogy and Petrology 133, 122-135. O’Neill, H.St.C., Eggins, S.M., 2002. The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts. Chemical Geology 186, 151-181. Peccerillo, A., 2005. The Roman Province. In: Springer Berlin Heidelberg (Ed.), Plio-Quaternary volcanism in Italy. Springer New York. . Putirka, K., 1999. Clinopyroxene + liquid equilibria. Contributions to Mineralogy and Petrology 135, 151-163. Putirka, K.D., 2008. Thermometers and barometers for volcanic systems. In: Putirka, K.D., and Tepley, F. (ed.) Minerals, Inclusions, and Volcanic Processes. Review in Mineralogy and Geochemistry 69, pp. 61-120. Putirka, K., Johnson, M., Kinzler, R., Walker, D., 1996. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar. Contributions to Mineralogy and Petrology 123, 92-108. Putirka, K., Ryerson, F.J., Mikaelian, H., 2003. New igneous thermobarometers for mafic and evolved lava compositions, based on clinopyroxene+liquid equilibria. American Mineralogist 88, 1542-1554. Roeder, P.L., Emslie, R.F., 1970. Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology 29, 275-289. Rogers, N.W., Hawkesworth, C.J., Parker, R.J., March, J.S., 1985. The geochemistry of potassic lavas from Vulsini, central Italy and implications for mantle enrichment processes beneath the Roman region. Contributions to Mineralogy and Petrology 90, 244-257. Sack, R.O., Walker, D., Carmichael, I.S.E., 1987. Experimental petrology of alkalic lavas: constraints on cotectics of multiple saturation in natural basic liquids. Contributions to Mineralogy and Petrology 96, 1-23. Schuessler, J.A., Botcharnikov, R.E., Behrens, H., Misiti, V., Freda, C., 2008. Oxidation state of iron in phonotephritic melts. American Mineralogist 93, 1493-1504. Sugawara, T., 1998. Review on element partitioning for olivine-liquid and plagioclase-liquid. Bulletin of the Volcanological Society of Japan 43, 181-201. Toplis, M.J., 2005. The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contributions to Mineralogy and Petrology 149, 22-39. Wenzel, T., Baumgartner, L.P., Brugmann, G.E., Konnikov, E.G., Kislov, E.V., 2002. Partial melting and assimilation of dolomitic xenoliths by mafic magma: the Ioko-Dovyren intrusion (North Baikal Region, Russia). Journal of Petrology 43, 2049-2074.en
dc.description.obiettivoSpecifico3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanicien_US
dc.description.journalTypeJCR Journalen_US
dc.description.fulltextopenen
dc.contributor.authorMollo, S.-
dc.contributor.authorGaeta, M.-
dc.contributor.authorFreda, C.-
dc.contributor.authorDi Rocco, T.-
dc.contributor.authorMisiti, V.-
dc.contributor.authorScarlato, P.-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentDipartimento di Scienze della Terra, Sapienza Università di Roma. P.le Aldo Moro 5 00176 Rome Italyen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentDipartimento di Scienze della Terra, Sapienza Università di Roma. P.le Aldo Moro 5 00176 Rome Italyen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità di Roma "La Sapienza"-
crisitem.author.deptUniversità La Sapienza-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptUniversità di Roma La sapienza-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-2320-8096-
crisitem.author.orcid0000-0002-6151-7789-
crisitem.author.orcid0000-0003-1933-0192-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Mollo et al.pdf2.48 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

75
checked on Feb 10, 2021

Page view(s) 50

226
checked on Apr 24, 2024

Download(s) 5

957
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric