Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5445
DC FieldValueLanguage
dc.contributor.authorallCorsaro, R. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallMétrich, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallAllard, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallAndronico, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallMiraglia, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallFourmentraux, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2010-01-07T14:17:04Zen
dc.date.available2010-01-07T14:17:04Zen
dc.date.issued2009en
dc.identifier.urihttp://hdl.handle.net/2122/5445en
dc.description.abstractThe 1974 western flank eruption of Mount Etna produced a rare, nearly aphyric and plagioclase-free trachybasalt that could not be derived from the central volcano conduits and was more alkaline and more radiogenic than all previous historical lavas. New results for the petrochemistry and volatile content of its products, combined with contemporaneous seismic and volcanological observations, allow us to reinterpret the origin and significance of this event. We show that the eruption was most likely triggered by deep tectonic fracturing that allowed a dike-like intrusion to propagate in 9 days from 11 km depth up to the surface, bypassing the central conduits. Relatively fast, closed system decompression of the volatile-rich magma initially led to lava fountaining and the rapid growth of two pyroclastic cones (Mounts De Fiore), followed by Strombolian activity and the extrusion of viscous lava flows when gas-melt separation developed in the upper portion of the feeding fracture. The 1974 trachybasalt geochemistry indicates its derivation by mixing 25% of preexisting K-poor magma (best represented by 1763 La Montagnola eruption’s products) and 75% of a new K-rich feeding magma that was gradually invading Mount Etna’s plumbing system and became directly extruded during two violent flank eruptions in 2001–2003. We propose to classify 1974-type so-called ‘‘eccentric’’ eruptions on Etna as deep dike-fed (DDF) eruptions, as opposed to more common central conduit-fed flank eruptions, in order to highlight their actual origin rather than their topographic location. We ultimately discuss the possible precursors of such DDF eruptions.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJ. Geophys. Resen
dc.relation.ispartofseries/114(2009)en
dc.relation.isversionofhttp://www.earth-prints.org/handle/2122/4577en
dc.subject1974 deep dike-fed eruptionen
dc.subjectMt. Etnaen
dc.titleThe 1974 flank eruption of Mount Etna: An archetype for deep dike-fed eruptions at basaltic volcanoes and a milestone in Etna's recent historyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB07204en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.identifier.doi10.1029/2008JB006013en
dc.relation.referencesAcocella, V., and M. Neri (2003), What makes flank eruptions? The 2001 Mount Etna eruption and its possible triggering mechanisms, Bull. Volcanol., 65, 517– 529, doi:10.1007/s00445-003-0280-3. Aiuppa, A., P. Allard, W. D’Alessandro, S. Giammanco, F. Parello, and M. Valenza (2004), Magmatic gas leakage at Mount Etna (Sicily, Italy): Relationships with the volcano-tectonic structures, the hydrological pattern and the eruptive activity, in Mt. Etna: Volcano Laboratory, Geophys. Monogr. Ser, vol. 143, edited by A. Bonaccorso et al., pp. 129– 145, AGU, Washington, D. C Aiuppa, A., R. Moretti, C. Federico, G. Giudice, S. Gurrieri, M. Liuzzo, P. Papale, H. Shinohara, and M. Valenza (2007), Forecasting Etna eruptions by real-time observation of volcanic gas composition, Geology, 35(12), 1115– 1118, doi:10.1130/G24149A.1. Allard, P., et al. (1991), Eruptive and diffuse emissions of CO2 from Mount Etna, Nature, 351, 387–391, doi:10.1038/351387a0. Allard, P., B. Behncke, S. D’Amico, M. Neri, and S. Gambino (2006), Mount Etna 1993– 2005: Anatomy of an evolving eruptive cycle, Earth Sci. Rev., 78, 85– 114, doi:10.1016/j.earscirev.2006.04.002. Andronico, D., and L. Lodato (2005), Effusive activity at Mount Etna Volcano (Italy) during the 20th century: A contribution to volcanic hazard assessment, Nat.Hazards, 36, 407–443, doi:10.1007/s11069-005-1938-2. Andronico, D., et al. (2005), A multi-disciplinary study of the 2002– 03 Etna eruption: Insights into a complex plumbing system, Bull. Volcanol., 67, 314– 330, doi:10.1007/s00445-004-0372-8. Armienti, P., F. Innocenti, R. Petrini, M. Pompilio, and L. Villari (1988), Sub-aphyric alkali basalt from Mt. Etna: Inferences on the depth and composition of the source magma, Bull. Mineral. Rend. Soc. Ital. Mineral. Petrol., 43, 877– 891. Armienti, P., S. Tonarini, M. D’Orazio, and F. Innocenti (2004), Genesis and evolution of Mt. Etna alkaline lavas: Petrological and Sr-Nd-B isotope constraints, Period. Mineral., 73, 29– 52. Baubron, J. C., P. Allard, J. C. Sabroux, D. Tedesco, and J. P. Toutain (1991), Soil gas emanations as precursory indicators of volcanic erup- tions, J. Geol. Soc., 148, 571– 576, doi:10.1144/gsjgs.148.3.0571. Bonaccorso, A., and P. M. Davis (2004), Modeling of ground deformation associated with recent lateral eruptions: Mechanics of magma ascent and intermediate storage atMt. Etna, inMt. Etna: Volcano Laboratory, Geophys. Monogr. Ser, vol. 143, edited by A. Bonaccorso et al., pp. 293 – 320, AGU, Washington, D. C. Bottari, A., E. Lo Giudice, G. Patane `, R. Romano, and C. Sturiale (1975), L’eruzione etnea del Gennaio-Marzo 1974, Riv. Miner. Siciliana, 154– 156, 175– 199. Branca, S., and P. Del Carlo (2004), Eruptions of Mt. Etna during the past 3200 years: A revised compilation integrating the historical and stratigraphic records, in Mt. Etna: Volcano Laboratory, Geophys. Monogr. Ser, vol. 143, edited by A. Bonaccorso et al., pp. 1 – 27, AGU, Washington, D. C. Carignan, J., P. Hild, G. Mevelle, J. Morel, and D. Yeghicheyan (2001), Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: A study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH, Geostand. Newsl., 25, 187 – 198, doi:10.1111/j.1751- 908X.2001.tb00595.x. Castellano, M., F. Ferrucci, C. Godano, S. Imposa, and G. Milano (1993), Upwards migration of seismic focii: A forerunner of the 1989 eruption of Mt Etna (Italy), Bull. Volcanol., 55, 357–361, doi:10.1007/BF00301146. Chester, D. K., A. M. Duncan, J. E. Guest, and C. R. J. Kilburn (1985), Mount Etna, the Anatomy of a Volcano, Chapman and Hall, London. Chiarabba, C., A. Amato, E. Boschi, and F. Barberi (2000), Recent seismi- city and tomographic modeling of the Mount Etna plumbing system, J. Geophys. Res., 105, 10,923– 10,938, doi:10.1029/1999JB900427. Chiarabba, C., P. De Gori, and D. Patane ` (2004), The Mt. Etna plumbing system: The contribution of seismic tomography, in Mt. Etna: Volcano Laboratory, Geophys. Monogr. Ser, vol. 143, edited by A. Bonaccorso et al., pp. 191–204, AGU, Washington, D.C. Clocchiatti, R., J. L. Joron, and M. Treuil (1988), The role of selective alkali contamination in the evolution of recent historic lavas of Mt. Etna, J. Volcanol. Geotherm. Res., 34, 241– 249, doi:10.1016/ 0377-0273(88)90036-4. Clocchiatti, R., M. Condomines, N. Gue ´not, and J. C. Tanguy (2004), Magma changes at Mount Etna: The 2001 and 2002– 2003 eruptions, Earth Planet. Sci. Lett., 226, 397–414, doi:10.1016/j.epsl.2004.07.039. Coltelli, M., P. Del Carlo, M. Pompilio, and L. Vezzoli (2005), Explosive eruption of a picrite: The 3930 BP subplinian eruption of Etna volcano (Italy), Geophys. Res. Lett., 32, L23307, doi:10.1029/2005GL024271. Condomines, M., R. Bouchez, J. L. Ma, J. C. Tanguy, J. Amosse ´, and M. Piboule (1987), Short-lived radioactive disequilibria and magma dynamics in Etna volcano, Nature, 325, 607– 609, doi:10.1038/325607a0. Condomines, M., J. C. Tanguy, and V. Michaud (1995), Magma dynamics at Mt. Etna: Constraints from U-Th-Ra-Pb radioactive disequilibria and Sr isotopes in historical lavas, Earth Planet. Sci. Lett., 132, 25–41, doi:10.1016/0012-821X(95)00052-E. Corsaro, R. A., and M. Pompilio (2004), Magma dynamics in the shallow plumbing system of Mt. Etna as recorded by compositional variations in volcanics of recent summit activity (1995– 1999), J. Volcanol. Geotherm. Res., 137(1– 3), 55– 71, doi:10.1016/j.jvolgeores.2004.05.008. Corsaro, R. A., L. Miraglia, and M. Pompilio (2007), Petrologic evidence of a complex plumbing system feeding the July August 2001 eruption of Mt. Etna, Sicily, Italy, Bull. Volcanol., 69, 401 – 421, doi:10.1007/ s00445-006-0083-4. Couch, S., R. S. J. Sparks, and M. R. Carroll (2003), The kinetics of degassing-induced crystallization at Soufrie `re Hills volcano, Montserrat, J. Petrol., 44, 1477–1502, doi:10.1093/petrology/44.8.1477. D’Alessandro, W., S. Giammanco, F. Parello, and M. Valenza (1997), CO2 output and d 13 C (CO2) from Mount Etna as indicators of degassing of shallow asthenosphere, Bull. Volcanol., 58, 455 – 458, doi:10.1007/ s004450050154. Dixon, J. E. (1997), Degassing of alkalic basalts, Am. Mineral., 82, 368–378. Downes, M. J. (1974), Sector and oscillatory zoning of calcic augites from M. Etna, Sicily, Contrib. Mineral. Petrol., 142, 261–283. Frezzotti, M. L., B. De Vivo, and R. Clocchiatti (1991), Melt-mineral-fluid interactions in ultramafic nodules from alkaline lavas of M.Etna (Sicily, Italy): Melt and fluid inclusion evidence, J. Volcanol. Geotherm. Res., 47, 209–219, doi:10.1016/0377-0273(91)90001-G. Giammanco, S., K. W. W. Sims, and M. Neri (2007), Measurements of 220 Rn and 222 Rn and CO2 emissions in soil and fumarole gases on Mt. Etna volcano (Italy): Implications for gas transport and shallow ground fracture, Geochem. Geophys. Geosyst., 8, Q10001, doi:10.1029/ 2007GC001644. Giordano, D., and D. B. Dingwell (2003), Viscosity of hydrous Etna basalt: Implications for Plinian-style basaltic eruptions, Bull. Volcanol., 65, 8– 14. Gudmunsson, A. (2002), Emplacement and arrest of sheets and dykes in central volcanoes, J. Volcanol. Geotherm. Res., 116, 279–298, doi:10.1016/S0377-0273(02)00226-3. Guerra, I., A. Lo Bascio, G. Luongo, and R. Scarpa (1976), Seismic activity accompanying the 1974 eruption of Mt. Etna, J. Volcanol. Geotherm. Res., 1, 347–362, doi:10.1016/0377-0273(76)90024-X. Guest, J. E., A. T. Huntington, G. Wadge, G. Brander, B. Booth, S. Carter, and A. Duncan (1974), Recent eruption of Mount Etna, Nature, 250, 385– 387, doi:10.1038/250385a0. Hirn, A., A. Nercessian, M. Sapin, F. Ferrucci, and G. Wittlinger (1991), Seismic heterogeneity of Mt. Etna: Structure and activity, Geophys. J. Int., 105, 139– 153, doi:10.1111/j.1365-246X.1991.tb03450.x. Houlie ´, N., J. C. Komorowski, M. de Michele, M. Kasereka, and H. Ciraba (2006), Early detection of eruptive dykes revealed by normalized difference vegetation index (NDVI) on Mt. Etna and Mt. Nyiragongo, Earth Planet. Sci. Lett., 246, 231–240, doi:10.1016/ j.epsl.2006.03.039. Jarosewich, E., J. A. Nelen, and J. A. Norberg (1980), Reference samples for electron microprobe analysis, Geostand. Newsl., 4,43–47, doi:10.1111/j.1751-908X.1980.tb00273.x. Jaupart, C., and S. Vergniolle (1989), The generation and collapse of foam layer at the roof of a basaltic magma chamber, J. Fluid Mech., 203, 347–380, doi:10.1017/S0022112089001497. Joron, J. L., and M. Treuil (1984), Etude ge ´ochimique et pe ´trogene `se des laves de l’Etna, Sicile, Italie, Bull. Volcanol., 47, 1125 – 1144, doi:10.1007/BF01952368. Kamenetsky, V., and R. Clocchiatti (1996), Primitive magmatism of Mt. Etna: Insights from mineralogy and melt inclusions, Earth Planet. Sci. Lett., 142, 553– 572, doi:10.1016/0012-821X(96)00115-X. Kamenetsky, V., M. Pompilio, N. Me ´trich, A. Sobolev, D. Kuzmin, and R. Thomas (2007), Deep supply of volatile-rich high-Mg magmas changes explosivity of Mount Etna eruptions, Geology, 35(3), 255–258, doi:10.1130/G23163A.1. LeMaitre,R.W.(Ed.)(2002), Igneous Rocks: A Classification and Glossary of Terms, Recommendations of the IUGS Subcomission on the Systematics of Igneous Rocks, 2nd ed., 236 pp., Cambridge Univ. Press, Cambridge, U. K. Lentini, F. (1982), The geology of the Mt. Etna basement, Mem. Soc. Geol. Ital., 23, 7 –25. Lister, J. R. (1990), Buoyancy-driven fluid fracture: Effects of material roughness and of low-viscosity precursors, J. Fluid Mech., 210, 263–280, doi:10.1017/S0022112090001288. Lister, J. R., and R. C. Kerr (1991), Fluid-mechanical models of crack propagation and their application to magma transport in dikes, J. Geo- phys. Res., 96, 10,049– 10,077, doi:10.1029/91JB00600. Mazzarini, F., and P. Armienti (2001), Flank cones at Mount Etna volcano: Do they have a power law distribution?, J. Volcanol. Geotherm. Res., 62, 420–430. McLeod, P., and S. Tait (1999), The growth of dykes from magma cham- bers, J. Volcanol. Geotherm. Res., 92, 231 – 245, doi:10.1016/S0377- 0273(99)00053-0. Me ´riaux, C., and C. Jaupart (1998), Dike propagation through an elastic plate, J. Geophys. Res., 103, 18,295– 18,314, doi:10.1029/98JB00905. Me ´trich, N., and M. J. Rutherford (1998), Low pressure crystallization paths of H2O-saturated basaltic-hawaiitic melts from Mt. Etna: Implications for open-system degassing volcanoes, Geochim. Cosmochim. Acta, 62, 1195–1205, doi:10.1016/S0016-7037(98)00048-9. Me ´trich, N., P. Allard, N. Spilliaert, D. Andronico, and M. Burton (2004), 2001 flank eruption of the alkali and volatile-rich primitive basalt respon- sible for Mount Etna’s evolution in the last three decades, Earth Planet. Sci. Lett., 228, 1 –17, doi:10.1016/j.epsl.2004.09.036. Miraglia, L. (2002), Evidence for heterogeneous magmas in the feeding system of the 1763 ‘‘La Montagnola’’ eruption at Mount Etna, Plinius, 27, 108– 112. Miraglia, L. (2006), Valutazione dell’accuratezza e della precisione delle analisi eseguite con il sistema analitico SEM-EDS su standard interna- zionali di minerali e vetri, Rep. UFVG2006/115, 5 pp., Ist. Naz. Geofis. e Vulcanol., Catania, Italy. Murru, M., C. Montuori, M. Wyss, and E. Privitera (1999), The location of magma chambers at Mt. Etna, Italy, mapped by b-values, Geophys. Res. Lett., 26, 2553–2556, doi:10.1029/1999GL900568. Newman, S., and J. B. Lowenstern (2002), VOLATILECALC: A silicate melt-H2O-CO2 solution model written in Visual Basic Excel, Comput. Geosci., 28, 597– 604, doi:10.1016/S0098-3004(01)00081-4. Papale, P., R. Moretti, and D. Barbato (2006), The compositional depen- dence of the saturation surface of H2O+CO2 fluids in silicate melts, Chem. Geol., 229, 78–95, doi:10.1016/j.chemgeo.2006.01.013. Parfitt, E. A. (2004), A discussion of the mechanisms of explosive basaltic eruptions, J. Volcanol. Geotherm. Res., 134, 77 – 107, doi:10.1016/ j.jvolgeores.2004.01.002. Patane `, D., C. Chiarabba, O. Cocina, P. De Gori, M. Moretti, and E. Boschi (2002), Tomographic images and 3D earthquake locations of the seismic swarm preceding the 2001 Mt. Etna eruption: Evidence for adykeintrusion, Geophys.Res.Lett., 29(10), 1497, doi:10.1029/ 2001GL014391. Pompilio, M., R. Trigila, and V. Zanon (1998), Melting experiments on Mt. Etna lavas: I-The calibration of an empirical geothermometer to estimate the eruptive temperature, Acta Vulcanol., 10(1), 67– 75. Riedel, C., G. G. J. Ernst, and M. Riley (2003), Controls on the growth and geometry of pyroclastic constructs, J. Volcanol. Geotherm. Res., 127, 121– 152, doi:10.1016/S0377-0273(03)00196-3. Rittmann, A. (1965), Notizie sull’Etna, Suppl. Nuovo Cimento, 3(I), 1117– 1123. Rittmann, A., R. Romano, and C. Sturiale (1971), L’eruzione etnea dell’aprile– giugno 1971, Atti Accad. Gioenia Sci. Nat., VII, 3– 29. Romano, R., and C. Sturiale (1982), The historical eruptions of Mt. Etna (volcanological data), Mem. Soc. Geol. Ital., 23, 75–98. Ryan, M. P. (1987), Neutral buoyancy and the mechanical evolution of magmatic systems, in Magmatic Processes: Physicochemical Principles, edited by B. O. Mysen, Geochem. Soc. Spec. Publ., 1, 259–288. Ryan, M. P. (1988), The mechanics and three-dimensional internal structure of active magmatic systems: Kilauea Volcano, Hawaii, J. Geophys. Res., 93, 4213– 4248, doi:10.1029/JB093iB05p04213. Ryan, M. P. (1994), Neutral buoyancy-controlled magma transport and storage in mid-ocean ridge magma reservoirs and their sheeted dike complex: A summary of basic relationships, in Magmatic Systems, edited by M. P. Ryan, pp. 97– 135, Academic, San Diego, Calif. Schiano, P., R. Clocchiatti, L. Ottolini, and T. Busa ` (2001), Transition of Mount Etna lavas from a mantle-plume to an island-arc magmatic source, Nature, 412, 900–904, doi:10.1038/35091056. Sobolev, A., and M. Chaussidon (1996), H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H2O storage and recycling in the mantle, Earth Planet. Sci. Lett., 137, 45– 55, doi:10.1016/0012-821X(95)00203-O. Spilliaert, N., P. Allard, N. Me ´trich, and A. V. Sobolev (2006), Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy), J. Geophys. Res., 111, B04203, doi:10.1029/ 2005JB003934. Sturiale, C. (1970), La singolare eruzione dell’Etna del 1763 ‘‘La Montagnola’’, Bull. Mineral. Rend. Soc. Ital. Mineral. Petrol., 26, 314– 351. Tanguy, J. C. (1980), L’Etna: Etude pe ´trologique et pale ´omagne ´tique. Implications volcanologiques, thesis, 618 pp., Univ. Pierre et Marie Curie Paris 6, Paris, 15 Dec. Tanguy, J. C., and G. Kieffer (1977), The 1974 eruption of Mount Etna, Bull. Volcanol., 40(4), 239– 252, doi:10.1007/BF02597566. Tanguy, J. C., M. Condomines, and G. Kieffer (1997), Evolution of the Mount Etna magma: Constraints on the present feeding system and erup- tive mechanism, J. Volcanol. Geotherm. Res., 75, 221–250, doi:10.1016/ S0377-0273(96)00065-0. Tazieff, H. (1974), Card 1791, 06/1974, Bulletin of the Global Volcanic Network, Smithson. Inst., Washington, D. C. Tonarini, S., P. Armienti,M. D’Orazio, and F. Innocenti (2001), Subduction- like fluids in the genesis of Mt. Etna magmas: Evidence from boron isotopes and fluid mobile elements, Earth Planet. Sci. Lett., 192, 471–483, doi:10.1016/S0012-821X(01)00487-3. Viccaro, M., C. Ferlito, L. Cortesogno, R. Cristofolini, and L. Gaggero (2006), Magma mixing during the 2001 event at Mount Etna (Italy): Effects on the eruptive dynamics, J. Volcanol. Geotherm. Res., 149, 139–159, doi:10.1016/j.jvolgeores.2005.06.004. Wadge, G. (1980), Flank fissures of Etna and the surface expressions of magmatic conduits, in United Kingdom Research on Mount Etna 1977–79, pp. 27– 30, R. Soc., London. Woods, A. W., O. Bokhove, A. de Boer, and B. E. Hill (2006), Compres- sible magma flow in a two-dimensional elastic-walled dike, Earth Planet. Sci. Lett., 246, 241–250, doi:10.1016/j.epsl.2005.11.065. Working Group for the Surveillance of Etna (1974), Summary report on the 1974 Etna eruption, Open File Rep. 68, Ist. Int. di Vulcanol., CNR, Catania, Italy.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCorsaro, R. A.en
dc.contributor.authorMétrich, N.en
dc.contributor.authorAllard, P.en
dc.contributor.authorAndronico, D.en
dc.contributor.authorMiraglia, L.en
dc.contributor.authorFourmentraux, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptLaboratoire Pierre Sue, CNRS-CEA, CE-Saclay, 91191 Gif sur Yvette, France-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0001-6137-8806-
crisitem.author.orcid0000-0001-7836-3117-
crisitem.author.orcid0000-0002-8333-1547-
crisitem.author.orcid0000-0001-9383-7683-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Corsaro et al 2009_1974 eruption.pdfMain article2.54 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

41
checked on Feb 10, 2021

Page view(s) 50

231
checked on Mar 27, 2024

Download(s)

39
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric