Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5439
AuthorsGualdi, S.* 
Scoccimarro, E.* 
Navarra, A.* 
TitleChanges in Tropical Cyclone Activity due to Global Warming in a General Circulation Model
Issue Date2009
URIhttp://hdl.handle.net/2122/5439
ISBN978-0-387-09409-0
Keywordsclimate
tropical cyclones
Subject Classification01. Atmosphere::01.01. Atmosphere::01.01.02. Climate 
AbstractThis study investigates the possible changes that the greenhouse global warming might generate in the characteristics of the tropical cyclones (TCs). The analysis has been performed using scenario climate simulations carried out with a fully coupled high-resolution global general circulation model. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the 20th Century with observations. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC occurrence with the large scale circulation. The results from the climate scenarios reveal a substantial general reduction of the TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical North West Pacific (NWP) and North Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with a reduced amount of convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Despite the overall warming of the tropical upper ocean and the expansion of warm SSTs to the subtropics and mid-latitudes, the action of the TCs remains well confined to the tropical region and the peak of TC number remains equatorward of 20° latitude in both Hemispheres. An extended version of this work is in available on Journal of Climate (Gualdi et al.,2008 - DOI:10.1175/2008JCLI1921.1)
Appears in Collections:Book chapters

Files in This Item:
File Description SizeFormat 
gualdi_hurricane_book.pdfmain article3.25 MBAdobe PDFView/Open
Show full item record

Page view(s)

63
checked on Apr 28, 2017

Download(s)

257
checked on Apr 28, 2017

Google ScholarTM

Check