Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5376
DC FieldValueLanguage
dc.contributor.authorallCosta, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallSparks, R. S. J.; Department of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UKen
dc.contributor.authorallMacedonio, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMelnik, O.; Department of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK ; Institute of Mechanics, Moscow State University, Moscow, Russiaen
dc.date.accessioned2009-12-23T13:36:26Zen
dc.date.available2009-12-23T13:36:26Zen
dc.date.issued2009-11en
dc.identifier.urihttp://hdl.handle.net/2122/5376en
dc.description.abstractMagma flow during explosive volcanic eruptions has been described assuming rigid conduits with simple cylindrical or planar geometries. Here we study the dynamics of explosive volcanic flows to take account of the role of elastic deformation of the conduit influenced by local magmatic pressure. Three cases are investigated: a dyke with elliptical cross-section, a cylindrical conduit and a deep dyke connected to a shallow cylinder. The model CPIUC (Macedonio et al., 2005) was used for simulations and generalized to account for elastic deformations of the conduit cross-section area due to magmatic overpressure. Fragmentation level is typically deeper in a dyke than in a cylinder. For flows in wide dykes pressure at the fragmentation depth can be lower than the surrounding lithostatic pressure by several tens of MPa, indicating that the wall-rocks of the dyke will be unstable, constraining the dyke width and eventually blocking the eruption. On the other hand, when the fragmentation level is shallow the corresponding lithostatic pressure is not large enough to close the dyke and eruptions from wide dykes are possible. The behaviour changes drastically when we assume the conduit is a dyke at depth that evolves to a cylinder near the surface. In this case even very wide dykes can be stable because the fragmentation level moves into the cylindrical region where deformation is negligible.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/288 (2009)en
dc.subjectconduit geometryen
dc.subjectexplosive eruptionen
dc.subjectelastic effecten
dc.subjectdyke deformationen
dc.titleEffects of wall-rock elasticity on magma flow in dykes during explosive eruptionsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber455–462en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zonesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneousen
dc.identifier.doi10.1016/j.epsl.2009.10.006en
dc.relation.referencesAdams, N.K., de Silva, S.L., Self, S., Salas, G., Schubring, S., Permenter, J.L., Arbesman, K., 2001. The physical volcanology of the 1600 eruption of Huaynaputina, southern Peru. Bull. Volcanol. 62, 493–518. Barnett, W.P., 2008. The rock mechanics of kimberlite volcanic pipe excavation. J. Volcanol. Geotherm. Res. 174, 29–39. Buresti, G., Casarosa, C., 1989. One-dimensional adiabatic flow of equilibrium gasparticles mixtures in long vertical ducts with friction. J. Fluid Mech. 203, 251–272. Costa, A.,Melnik, O., Sparks, R.S.J., Voight, B., 2007a. The control ofmagma flowin dykes on cyclic lavadome extrusion. Geophys. Res. Lett. 34, L02303. doi:10.1029/2006GL027466. Costa,A.,Melnik, O., Sparks, R.S.J., 2007b. Controls of conduit geometry and wallrock elasticity on lava dome. Earth Planet. Sci. Lett. 260 (1–2), 137–151. doi:10.1016/j.epsl.2007.05.024. Costa, A., Melnik, O., Vedeneeva, E., 2007c. Thermal effects during magma ascent in conduits. J. Geophys. 112 (B12). doi:10.1029/2007JB004985. A. Costa et al. / Earth and Planetary Science Letters 288 (2009) 455–462 461 Dobran, F., 1992. Nonequilibrium flow in volcanic conduits and application to the eruptions of Mt. St. Helens on May 18, 1980 and Vesuvius in AD 79. J. Volcanol. Geotherm. Res. 49, 285–311. Folch, A., Martí, J., 2009. Time-dependent chamber and vent conditions during explosive caldera-forming eruptions. Earth Planet. Sci. Lett. 280 (1–4), 246–253. doi:10.1016/j.epsl.2009.01.035. Gilberti, G., Wilson, L., 1990. The influence of geometry on the ascent of magma in open fissures. Bull. Volcanol. 52, 515-512. Hawthorne, J.B., 1975. Model of a kimberlite pipe. Phys. Chem. Earth 9, 1–15. Huppert, H.E., Woods, A.W., 2002. The role of volatiles in magma chamber dynamics. Nature 420, 493–495. Lavallée, Y., de Silva, S., Salas, G., Byrnes, J.M., 2006. Explosive volcanism (VEI 6) without caldera formation: insight from Huaynaputina volcano, southern Peru. Bull. Volcanol. 68, 333–348. Lister, J.R., Kerr, R.C., 1991. Fluid mechanical models of crack propagation and their application to magma transport in dykes. J. Geophys. Res. 96, 10049–10077. Macedonio, G., Dobran, F., Neri, A., 1994. Erosion processes in volcanic conduits and an application to the AD 79 eruption of Vesuvius, Earth Planet. Sci. Lett. 121, 137–152. Macedonio, G., Neri, A., Martí, J., Folch, A., 2005. Temporal evolution of flow conditions in sustained magmatic explosive eruptions. J. Volcanol. Geotherm. Res. 143 (1–3), 153–172. doi:10.1016/j.jvolgeores.2004.09.015, 2005. Mastin, L.G., 2002. Insights into volcanic conduit flow from an open-source numerical model. Geochem., Geophys., Geosyst. 3 (7). doi:10.1029/2001GC000192. Melnik, O., 1999. Fragmenting magma. Nature 397, 394–395. Melnik, O., 2000. Dynamics of two-phase conduit flow of high-viscosity gas-saturated magma: large variations of sustained explosive eruption intensity. Bull. Volcanol. 62, 153–170. Mériaux, C., Jaupart, C., 1995. Simple fluid dynamics models of volcanic rift zones. Earth Planet. Sci. Lett. 136, 223–240. Muskhelishvili, N., 1963. Some Basic Problems in the Mathematical Theory of Elasticity. Noordhof, Leiden, The Netherlands. Paıdoussis, M.P., 2006. Wave propagation in physiological collapsible tubes and a proposal for a Shapiro number. J. Fluids Struct. 22, 721–725. Papale, P., 1999. Strain-induced magma fragmentation in explosive eruptions. Nature 397, 425–428. Roman, D.C., Neuberg, J., Luckett, R.R., 2006. Assessing the likelihood of volcanic eruption through analysis of volcanotectonic earthquake fault-plane solutions. Earth Planet. Sci. Lett. 248, 244–252. doi:10.1016/j.epsl.2006.05.029. Rubin, A.M., 1995. Propagation of magma-filled cracks. Annu. Rev. Planet. Sci. 23, 287–336. Shapiro, A.H., 1977. Steady flow in collapsible tubes. J. Biomech. Eng. 99, 126–147. Sparks, R.S.J., 1978. The dynamics of bubble formation and growth in magmas: a review and analysis. J. Volcanol. Geotherm. Res. 3, 1–37. Vedeneeva, E., Melnik, O., Barmin, A., Sparks, R.S.J., 2005. Viscous dissipation in explosive volcanic flows. Geophys. Res. Lett. 32 (5). doi:10.1029/2004GL020954. Walker, G.P.L., Self, S., Wilson, L., 1984. Tarawera 1886, New Zealand, a basaltic plinian fissure eruption. J. Volcanol. Geotherm. Res. 21, 61–78. Wang, Z., 2000. Dynamic versus static elastic properties of reservoir rocks: SEG Books, vol. 19, pp. 531–539. Wilson, L., Sparks, R.S.J., Walker, G.P.L., 1980. Explosive volcanic eruptions — IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys. J. R. Astron. Soc. 63, 117–148. Woods, A.W., Koyaguchi, T., 1994. Transitions between explosive and effusive eruptions of silicic magma. Nature 370, 641–644. Young, T., 1808. Hydraulic investigations, subservient to an intended Croonian Lecture on the motion of the blood. Philos. Trans. R. Soc. Lond. 98, 164–186.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCosta, A.en
dc.contributor.authorSparks, R. S. J.en
dc.contributor.authorMacedonio, G.en
dc.contributor.authorMelnik, O.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDepartment of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UKen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDepartment of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK ; Institute of Mechanics, Moscow State University, Moscow, Russiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptDepartment of Earth Sciences, University of Bristol, Bristol, UK.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptInst. Mechanics, Moscow State University, Moskow, Russia-
crisitem.author.orcid0000-0002-4987-6471-
crisitem.author.orcid0000-0001-6604-1479-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
CosSpa-09.pdf960.57 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

34
checked on Feb 10, 2021

Page view(s) 20

291
checked on Apr 24, 2024

Download(s)

29
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric