Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5369
DC FieldValueLanguage
dc.contributor.authorallTroiano, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallDi Giuseppe, M. G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPetrillo, Z.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPatella, D.; Department of Physical Sciences, University Federico II, Naples, Italyen
dc.date.accessioned2009-12-23T10:36:49Zen
dc.date.available2009-12-23T10:36:49Zen
dc.date.issued2009-03-24en
dc.identifier.urihttp://hdl.handle.net/2122/5369en
dc.description.abstractA controlled source audiofrequency magnetotelluric (CSAMT) survey has been undertaken in the Pantano di San Gregorio Magno faulted basin, an earthquake prone area of Southern Apennines in Italy. A dataset from 11 soundings, distributed along a nearly N-S 780 m long profile, was acquired in the basin’s easternmost area, where the fewest data are available as to the faulting shallow features. A preliminary skew analysis allowed a prevailing 2D nature of the dataset to be ascertained. Then, using a single-site multi-frequency approach, Dantzig’s simplex algorithm was introduced for the first time to estimate the CSAMT decomposition parameters. The simplex algorithm, freely available online, proved to be fast and efficient. By this approach, the TM and TE mode field diagrams were obtained and a N35!W ± 10! 2D strike mean direction was estimated along the profile, in substantial agreement with the fault traces within the basin. A 2D inversion of the apparent resistivity and phase curves at seven almost noise-free sites distributed along the central portion of the profile was finally elaborated, reinforced by a sensitivity analysis, which allowed the best resolved portion of the model to be imaged from the first few meters of depth down to a mean depth of 300 m b.g.l. From the inverted section, the following features have been outlined: (i) a cover layer with resistivity in the range 3–30 ! m ascribed to the Quaternary lacustrine clayey deposits filling the basin, down to an average depth of about 35 m b.g.l., underlain by a structure with resistivity over 50 ! m up to about 600 ! m, ascribed to the Mesozoic carbonate bedrock; (ii) a system of two normal faults within the carbonate basement, extending down to the maximum best resolved depth of the order of 300 m b.g.l.; (iii) two wedge-shaped domains separating the opposite blocks of the faults with resistivity ranging between 30 ! m and 50 ! m and horizontal extent of the order of some tens of metres, likely filled with lacustrine sediments and embedded fine gravels.en
dc.language.isoEnglishen
dc.publisher.nameIOP PUBLISHINGen
dc.relation.ispartofJournal of Geophysics and Engineeringen
dc.relation.ispartofseries/6 (2009)en
dc.subjectCSAMT methoden
dc.subject2D data processing and inversionen
dc.subjectSouthern Apennines chainen
dc.subjectfaulted depressionen
dc.titleImaging 2D structures by the CSAMT method: application to the Pantano di S. Gregorio Magno faulted basin (Southern Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber120–130en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methodsen
dc.identifier.doi10.1088/1742-2132/6/2/003en
dc.relation.referencesAbdul Azeez K K and Harinarayana T 2007 Magnetotelluric evidence of potential geothermal resource in Puga, Ladakh, NW Himalaya Curr. Sci. 93 323–9 Aiello G, Ascione A, Barra D, Munno R, Petrosino P, Russo Ermolli E and Villani F 2006 Evolution of the late Quaternary San Gregorio Magno tectono-karstic basin (southern Italy) inferred from geomorphological, tephrostratigraphical and palaeoecological analyses: tectonic implications J. Quat. Sci. 22 233–45 Amato A and Montone P 1997 Present day stress field and active tectonics in southern peninsular Italy Geophys. J. Int. 130 519–34 Ascione A, Cinque A, Improta L and Villani F 2003 Late Quaternary faulting within the Southern Apennines seismic belt: new data from Mt. Marzano area Quat. Int. 101–102 27–41 Bahr K 1988 Interpretation of the magnetotelluric impedance tensor: regional induction and local distortion J. Geophys. 62 119–27 Bernard P and Zollo A 1989 The Irpinia (Italy) 1980 earthquake: detailed analysis of a complex normal faulting J. Geophys. Res. B 94 1631–47 Brozzetti F and Salvatore A 2006 La distensione nell’Appennino Campano-Lucano: nuovi dati sui bacini intramontani della Valle del Tanagro, di S. Gregorio Magno e di Muro Lucano Rend. Soc. Geol. It. 2 98–100 Caiazzo C, Ascione A and Cinque A 2006 Late Tertiary-Quaternary tectonics of the Southern Apennines (Italy): new evidence from the Tyrrhenian slope Tectonophysics 421 23–51 Carrozzo M T, Chirenti A, Luzio D, Margiotta C and Quarta T 1981 Carta gravimetrica d’Italia: tecniche automatiche per la sua realizzazione Proc. 1st Annu. Meeting Italian Natl. Geophys. Group 132–9 Li Cuiping and Nowack R L 2005 Seismic tomography using travel-time surfaces for experiments in the laboratory J. Geophys. Eng. 2 231–7 D’Addezio G, Pantosti D and Valensise G 1991 Paleoearthquakes along the Irpinia fault at Pantano di S. Gregorio Magno, Southern Italy Il Quaternario 4 121–36 Dantzig G B 1963 Linear Programming and Extensions (Princeton, NJ: Princeton University Press) Di Fiore B, Magr`ı C and Siniscalchi A 2007 High resolution geoelectrical investigation for the structural characterisation of the 1980 Irpinia earthquake epicentre area (Pantano di San Gregorio) (in Italian) OV-INGV Open File Report Di Maio R, Mauriello P, Patella D, Petrillo Z, Piscitelli S and Siniscalchi A 1998 Electric and electromagnetic outline of the Mount Somma-Vesuvius structural setting J. Volcanol. Geotherm. Res. 82 219–38 Finetti I R, Lentini F, Carbone S, Del Ben A, Di Stefano A, Guarnieri P, Pipan M and Prizzon A 2005 Crustal tectonostratigraphy and geodynamics of the southern Apennines from CROP and other integrated geophysical-geological data CROP-Crustal Seismic Exploration of the Mediterranean Region ed I R Finetti (Amsterdam: Elsevier) pp 225–62 Gab`as A and Marcuello A 2003 The relative influence of different types of magnetotelluric data on joint inversions Earth Planets Space 55 243–8 Gamble T D, Goubau W M and Clarke J 1979 Magnetotelluric with a remote magnetic reference Geophysics 44 53–68 Geometrics Inc. 2000 Operation Manual for Stratagem Systems Running IMAGEM Ver. 2.16 (San Jose, CA: Geometrics Inc.) Goldstein M and Strangway D 1975 Audio-frequency magnetotelluric with a grounded electric dipole source Geophysics 40 669–83 Greenhalgh S A, Zhou Bing and Green A 2006 Solutions, algorithms and inter-relations for local minimization search geophysical inversion J. Geophys. Eng. 3 101–13 Groom R W and Bahr K 1992 Corrections for near surface effects, decomposition of the magnetotelluric impedance tensor and scaling corrections for regional resistivities: a tutorial Surv. Geophys. 13 341–80 129 A Troiano et al Groom RWand Bailey R C 1989 Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion J. Geophys. Res. B 94 1913–25 Groom R W and Bailey R C 1991 Analytical investigations of the effects of near surface three-dimensional galvanic scatterers on MT tensor decomposition Geophysics 56 496–518 Groom R W, Kurtz R D, Jones A G and Boerner D E 1993 A quantitative methodology for determining the dimensionality of conductivity structure and the extraction of regional impedance responses from magnetotelluric data Geophys. J. Int. 115 1095–118 Hansen P C 1998 Rank Deficient and Discrete Ill-Posed Problems. Numerical Aspects of Linear Inversion (Philadelphia, PA: Society Industrial Applied Mathematics) Hartmann A and Rath V 2005 Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs J. Geophys. Eng. 2 299–311 Hippolyte J C, Angelier J and Roure F 1994 A major geodynamic change revealed by Quaternary stress patterns in the Southern Apennines (Italy) Tectonophysics 230 199–210 Jimmy Stephen, Gokarn S G, Manoj C and Singh S B 2003 Effects of galvanic distortions on magnetotelluric data: interpretation and its correction using deep electrical data J. Earth Syst. Sci. 112 27–36 Jones A G and Groom R G 1993 Strike angle determination from the magnetotelluric impedance tensor in the presence of noise and local distortion: rotate at your peril! Geophys. J. Int. 113 524–34 Kim Jung-Ho, Yi Myeong-Jong, Hwang Se-Ho, Song Yoonho, Cho Seong-Jun and Synn Joong-Ho 2007 Integrated geophysical surveys for the safety evaluation of a ground subsidence zone in a small city J. Geophys. Eng. 4 332–47 Kaufman A A and Keller G V 1981 The Magnetotelluric Sounding Method (Amsterdam: Elsevier) Martini M and Scarpa R 1983 Earthquakes in Italy in the last century Earthquakes Observation, Theory and Interpretation, 85th Course ed H Kanamori and E Boschi (Bologna Italy: Scuola Italiana di Fisica E. Fermi) pp 479–82 Mazzotti A P, Stucchi E, Fradelizio G L, Zanzi L and Scandone P 2000 Seismic exploration in complex terrains: a processing experience in the Southern Apennines Geophysics 65 1402–17 McNeice G W and Jones A G 2001 Multisite, multifrequency tensor decomposition of magnetotelluric data Geophysics 66 158–73 Munno R and Petrosino P 2006 The late Quaternary tephrostratigraphical record of the San Gregorio Magno basin (southern Italy) J. Quat. Sci. 22 247–66 Mustopa E J, Furuya S, Jotaki H and Ushijima K 2003 Resistivity imaging by CSAMT method in Takigami geothermal field in Kyushu, Japan Mem. Fac. Eng. Kyushu Univ. 63 23–37 Pantosti D, Schwartz D P and Valensise G 1993 Paleoseismology along the 1980 surface rupture of the Irpinia fault: implications for earthquake recurrence in the Southern Apennines, Italy J. Geophys. Res. B 98 6561–77 Pantosti D and Valensise G 1990 Faulting mechanism complexity of the November 23, 1980, Campania–Lucania earthquake inferred from surface observations J. Geophys. Res. B 95 15319–41 Patella D, Petrillo Z, Siniscalchi A, Improta L and Di Fiore B 2005 A magnetotelluric study about the CROP-04 transect across the Southern Apennines, Italy CROP-Crustal Seismic Exploration of the Mediterranean Region ed I R Finetti (Amsterdam: Elsevier) pp 263–80 Qian W and Pedersen L B 1991 Industrial interference magnetotellurics: an example from the Tangshan area, China Geophysics 56 265–73 Rao C K, Jones A G and Moorkamp M 2007 The geometry of the Iapetus Suture Zone in central Ireland deduced from a magnetotelluric study Phys. Earth Planet. Inter. 161 134–41 Rodi W and Mackie R L 2001 Nonlinear conjugate gradients algorithm for 2D magnetotelluric inversion Geophysics 66 174–87 Savin C, Ritz M, Join J L and Bachelery P 2001 Hydrothermal system mapped by CSAMT on Karthala volcano, Grande Comore Island, Indian Ocean J. Appl. Geophys. 48 143–52 Schnegg P A and Sommaruga A 1995 Constraining seismic parameters with a controlled-source audio-magnetotelluric method (CSAMT) Geophys. J. Int. 122 152–60 Schwalenberg K, Rath V and Haak V 2002 Sensitivity studies applied to a two-dimensional resistivity model from the Central Andes Geophys. J. Int. 150 673–86 Schwarz G 1978 Estimating the dimension of a model Ann. Stat. 6 461–4 Spitzer K 2001 Magnetotelluric static shift and direct current sensitivity Geophys. J. Int. 144 289–99 Swift C M Jr 1967 A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States PhD thesis Massachusetts Institute of Technology, Cambridge, MA Tauber S, Banks R, Ritter O and Weckmann U 2003 A high-resolution survey of the Iapetus Suture Zone in south-west Scotland Geophys. J. Int. 153 548–68 Tikhonov A N and Arsenin V Y 1977 Solution of Ill-Posed Problems (New York: Wiley) Troiano A, Petrillo Z, Di Giuseppe M G, Balasco M, Diaferia I, Di Fiore B, Siniscalchi A and Patella D 2008 About the shallow resistivity structure of Vesuvius volcano Ann. Geophys. 51 179–87 Urquhart S A and Zonge K L 1997 Combining CSAMT and MT in difficult exploration environments The Leading Edge 16 383–4 Valensise G and Pantosti D 2001 Database of potential sources for earthquakes larger than M 5.5 in Italy Ann. Geofis. (Suppl) 44 Vannucci G, Pondrelli S, Argnani A, Morelli A, Gasparini P and Boschi E 2004 An atlas of Mediterranean seismicity Ann. Geophys. 47 247–306 Vozoff K 1991 The magnetotelluric method Electromagnetic Methods in Applied Geophysics vol 2B ed M N Nabighian (Tulsa, OK: Society Exploration Geophysicists) pp 641–711 Wannamaker P E 1997 Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, USA, part II: implications for CSAMT methodology Geophysics 62 466–76 Westaway R and Jackson J 1984 Surface faulting in the Southern Italian Campania–Basilicata earthquake of 23 November 1980 Nature 312 436–8 Williams J M and Rodriguez B D 2001 Magnetotelluric data across the Battle Mountain-Eureka and Carlin Trends, north of Eureka, Nevada USGS Open-File Report An Zhi-Guo and Di Qingyun 2007 Application of CSAMT method for exploring coal mine in Fujian Province, Southeastern China PIERS Online 3 430–43 Zonge K L 1992 Introduction to CSAMT Practical Geophysics II for the Exploration Geologist ed R Van Blaricom (Spokane, WA: Northwest Mining Association) pp 439–523 Zonge K L and Hughes L J 1991 Controlled source audio-frequency magnetotellurics Electromagnetic Methods in Applied Geophysics vol 2B ed M N Nabighian (Tulsa, OK: Society Exploration Geophysicists) pp 713–809en
dc.description.obiettivoSpecifico2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorTroiano, A.en
dc.contributor.authorDi Giuseppe, M. G.en
dc.contributor.authorPetrillo, Z.en
dc.contributor.authorPatella, D.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDepartment of Physical Sciences, University Federico II, Naples, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptDipartimento di Scienze Fisiche, Università «Federico II», Napoli, Italy-
crisitem.author.orcid0000-0001-9071-0900-
crisitem.author.orcid0000-0003-4573-131X-
crisitem.author.orcid0000-0001-6521-9634-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
TroDiG Pet - 2009.pdf1.94 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

18
checked on Feb 10, 2021

Page view(s) 20

361
checked on Apr 24, 2024

Download(s)

41
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric