Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5322
DC FieldValueLanguage
dc.contributor.authorallCurrenti, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallDel Negro, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallDi Stefano, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallNapoli, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2009-12-04T09:49:41Zen
dc.date.available2009-12-04T09:49:41Zen
dc.date.issued2009en
dc.identifier.urihttp://hdl.handle.net/2122/5322en
dc.description.abstract3-D magneto-elastic models based on finite element method (FEM) have been developed to compute piezomagnetic fields caused by magmatic overpressure sources.We solved separately (i) the elastostatic equation for the stress field and (ii) the coupled Poisson’s equation for magnetic potential field. The numerical computationswere focused on a more realistic modelling of Etna volcano, where remarkable magnetic changes have been observed during eruptive events. We evaluated the effects of topography and medium heterogeneities considering different multilayered crustal structures constrained by seismic tomography and geological evidences. When topography and magneto-elastic heterogeneities are included in the numerical models,the piezomagnetic field changes show significant deviations from the homogeneous half-space solution. Generally, it was found that the analytical model overestimates the expected magnetic changes. The numerical models of the piezomagnetic field showed significant differences in presence of strong magnetization contrasts and in proximity of steep cliffs, that is, at the volcano summit. The FEM approach presented here allows considering a picture of a fully 3-D model of Etna volcano, which could advance the reliability of model-based assessments of magnetic observations.en
dc.language.isoEnglishen
dc.publisher.nameBlackwell Publishingen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/179 (2009)en
dc.subjectNumerical solutionsen
dc.subjectMagnetic anomalies: modeling and interpretationen
dc.subjectVolcano monitoringen
dc.titleNumerical simulation of stress induced piezomagnetic fields at Etna volcanoen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1469-1476en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1111/j.1365-246X.2009.04381.xen
dc.relation.referencesAGIP S.p.A., 1977. Temperature sotterranee. Grafiche Fili Brugora, Milano, p. 1390. BONACCORSO, A., and DAVIS, P. M., 2004. Modeling of ground deformation associated with recent lateral eruptions: Mechanics of magma ascent and intermediate storage at Mount Etna, in Mount Etna: Volcano Laboratory, Geophys. Monogr. Ser., vol. 143, edited by S. Calvari et al., pp. 293– 306, AGU, Washington. BONACCORSO, A., CIANETTI, S., GIUNCHI, C., TRASATTI, E., BONAFEDE, M. and BOSCHI E., 2005. Analytical and 3D numerical modeling of Mt. Etna (Italy) volcano inflation. Geophys. J. Int., 163, 852-862. BONFORTE, A., BONACCORSO, A., GUGLIELMINO, F., PALANO, M., and PUGLISI, G., 2008. Feeding system and magma storage beneath Mt. Etna as revealed by recent inflation/deflation cycles, J. Geophys. Res., 113, B05406, doi:10.1029/2007JB005334. BRANCA, S., COLTELLI, M., DE BENI, E. and WIJBRANS, J., 2007. Geological evolution of Mount Etna volcano (Italy) from earliest products until the first central volcanism (between 500 and 100 ka ago) inferred from geochronological and stratigraphic data, Int. J. Earth. Sci. DOI 10.1007/s00531-006-0152-0 BROCHER, T.M., 2005. Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust, Bull. Seism. Soc. America, 95, 2071-2092. BUDETTA, G., CARBONE, D., GRECO, F. and RYMER, H., 2004. Microgravity studies at Mount Etna (Italy), in Mount Etna: Volcano Laboratory, Geophys. Monogr. Ser., vol. 143, edited by S. Calvari et al., pp. 221– 240, AGU, Washington, D.C. CAYOL, V. and CORNET, F.H., 1998. Effects of topography on the interpretation of the deformation field of prominent volcanoes-Application to Etna, Geophys. Res. Lett., 25(11), 11,979– 11,982. CHIARABBA, C., AMATO, A., BOSCHI, E. and BARBERI, F., 2000. Recent seismicity and tomographic modeling of the Mount Etna plumbing system, J. Geoph. Res., 105(B5), 10,923–10,938. COMSOL MULTIPHYSICS 3.4, 2008. Comsol AB, Stockholm, Sweden. CORSARO, R. and POMPILIO, M., 2003. Buoyancy-controlled eruption of magmas at Mt Etna, TerraNova, 16, 16–22. CURRENTI, G., DEL NEGRO, C., GANCI, and G., SCANDURA, D., 2008a. 3D numerical deformation model of the intrusive event forerunning the 2001 Etna eruption. Phys. Earth Planet. Interiors, doi:10.1016/j.pepi.2008.05.004. CURRENTI, G., DEL NEGRO, C., GANCI, G., and WILLIAMS, C., 2008b. Static stress changes induced by the magmatic intrusions during the 2002-2003 Etna eruption, J. Geophys. Res., 113, B10206, doi:10.1029/2007JB005301. CURRENTI, G., DEL NEGRO, C., SASAI, Y., 2008c. Time dependent piezomagnetic fields in viscoelastic medium, Geophys. J. Int., 172, 536–548. DAVIS, P. M., 1976, The computed piezomagnetic anomaly field for Kilauea volcano, Hawaii, J. Geomag. Geoelectr., 28, 113-122. DE GORI, P., CHIARABBA, C. and PATANE`, D., 2005. Qp structure of Mount Etna: Constraints for the physics of the plumbing system, J. Geophys. Res., 110, B05303, doi:10.1029/2003JB002875. DEL NEGRO, C. and FERRUCCI, F., 1998. Magnetic history of a dyke on Mount Etna (Sicily) Geophys. J. I.,133, 2, 451-458. DEL NEGRO, C. and NAPOLI, R., 2002. Ground and marine magnetic surveys of the lower eastern flank of Etna volcano (Italy) Journal of Volcanology and Geothermal Research, 114, 357-372. DEL NEGRO, C., NAPOLI R. and SICALI A., 2002. Automated system for magnetic monitoring of active volcanoes, Bull. Volcanol., 64 94– 99. DEL NEGRO, C. and CURRENTI, G., 2003. Volcanomagnetic signals associated with the 2001 flank eruption of Mt. Etna (Italy), Geophys. Res. Lett., 30, 7, 1357, doi:10.1029/2002GL015481. DEL NEGRO, C., CURRENTI, G., NAPOLI, R. and VICARI, A., 2004. Volcanomagnetic changes accompanying the onset of the 2002–2003. Eruption of Mt. Etna (Italy), Earth Planet. Sci. Lett., 229, 1–14. HILDENBRAND, T.G., ROSENBAUM, J.G. and KAUAHIKAUA, J.P., 1993. Aeromagnetic study of the Island of Hawaii, J. Geophys. Res., 98, 4099-4119. KEAREY, P. and BROOKS, M., 1991. An introduction to geophysical exploration. Second edition. Blackwell Scientific Publications, Oxford, pp. 254. LUNGARINI L., TROISE, C., MEO, M. and DE NATALE, G. 2005. Finite element modelling of topographic effects on elastic ground deformation at Mt. Etna, J. Volcan. Geotherm. Res., 144, 257-271. MOGI, K., 1958. Relations between the eruptions of various volcanos and the deformations of the ground surfaces around them, Bull. Earthq. Res. Inst., Univ. Tokyo, 36, 99–134. NAGATA, T., 1970. Basic magnetic properties of rocks under mechanical stresses, Tectonophysics, 9, 167-195. NAPOLI R., CURRENTI, G., DEL NEGRO, C., GRECO, F. and SCANDURA , D., 2008. Volcanomagnetic evidence of the magmatic intrusion on 13th May 2008 Etna eruption, Geophys. Res. Lett.,35, L22301, doi:10.1029/2008GL035350. OSHIMAN, N., 1990. Enhancement of tectonomagnetic change due to non-uniform magnetization in the Earth’s crust – Two-Dimensional case studies. J. Geomag. Geoelect., 42, 607-619. OKUBO, A. and OSHIMAN, N., 2004. Piezomagnetic field associated with a nuimerical solution of the Mogi model in a non-uniform elastic medium. Geophys. J. Int., 159, 509-520. PATANÈ, D., BARBERI, G., COCINA, O., DE GORI, P. and CHIARABBA, C., 2006. Time-Resolved Seismic Tomography Detects Magma Intrusions at Mount Etna. Science, 313, 821-823. POZZI, J.P., 1977. Effects of stresses on magnetic properties of volcanic rocks, Phys. Earth Planet. Inter., 14, 77-85. ROLPH, T.C., 1992. High field intensity results from recent and historic lavas, Phys. Earth Planet. Inter., 70, 224-230. ROSENBAUM, J.G., 1993. Magnetic grain-size variations through an ash flow sheet: Influence on magnetic properties and implications for cooling history. J. of Geoph. Res., 98, 11,715-11,727. SASAI, Y., 1986. A Green’s function for tectonomagnetic problems in an elastic half-space, J. Geomag. Geoelectr., 38, 949-969. SASAI, Y., 1991a. Piezomagnetic field associated with the Mogi model revisited: analytic solution for finite spherical source, J. Geomag. Geoelectr., 43, 21-64. SASAI, Y., 1991b. Tectonomagnetic modeling on the basis of the linear piezomagnetic effect, Bull. Earthq. Res. Inst., Univ. Tokyo, 65, 585-722. SAKANAKA, S., OSHIMAN, N. and SUMITOMO, N., 1997. A Hybrid calculation method of tectonomagnetic effect using BEM and the surface integral representation of the piezomagnetic potential – Two dimensional case study. J. Geomag. Geoelect., 49, 101-118. STACEY, D. and BANERJEE, S.K., 1974. The physical principles of rock magnetism, Dev. Solid Earth Geophys., 5,pp.117, Elsevier Scientific, Amsterdam. TANGUY, J.C., 1975. Intensity of the geomagnetic field from recent Italian lavas using a new palaeointensity method, Earth Plan. Sci. Lett., 27, 314-320. TAUXE, L., DEINO, A.D., BEHRENSMEYER, A.K. and POTTS, R., 1992. Pinning down the Brunhes/Matuyama and upper Jaramillo boundaries: As reconciliation of orbital and isotopic time scales. Earth Planet. Sci. Lett., 109, 561-572. TIBALDI, A. and GROPPELLI, G., 2002. Volcano-tectonic activity along structures of the unstable ne flank of Mt. Etna (italy) and their possible origin. J. Volcan. Geotherm. Res., 115, 277-302. TRIC, E., VALET, J.P., GILLOT, P.Y. and LEMEUR, I., 1994. Absolute paleointensities between 60 and 160 kyear BP from Mount Etna (Sicily). Phys. Earth Planet. Inter., 85, 113-129. UTSUGI, M., NISHIDA, Y. and SASAI, Y., 2000. Piezomagnetic potentials due to an inclined rectangular fault in a semi-infinite medium, Geophys. J. Int., 140, 479-492. WILLIAMS, C.A. and WADGE, G., 1998. The effects of topography on magma chamber deformation models: Application to Mt. Etna and radar interferometry, Geophys. Res. Lett., 25, 1549-1552. WILLIAMS, C.A. and WADGE, G., 2000. An accurate and efficient method for including the effects of topography in three-dimensional elastic models of ground deformation with applications to radar interferometry, J. Geophys. Res., 105(B4), doi: 10.1029/1999JB900307. issn: 0148-0227. YAMAZAKI, A. and T. SAKAI, 2006, Piezomagnetic field associated with the Mogi model considering topographic effects, (in Japanese with English abstract), Papers in Meteorology and Geophysics, 57, 21-36. ZLOTNICKI, J. and CORNET, F.H., 1986. A numerical model of earthquake-induced piezomagnetic anomalies. J. Geophys. Res., 91 (B1), 709-718.en
dc.description.obiettivoSpecifico2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCurrenti, G.en
dc.contributor.authorDel Negro, C.en
dc.contributor.authorDi Stefano, A.en
dc.contributor.authorNapoli, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0001-8650-5613-
crisitem.author.orcid0000-0001-5734-9025-
crisitem.author.orcid0000-0001-8304-3118-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Currenti et al GJI 2009.pdf656.82 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

10
checked on Feb 7, 2021

Page view(s) 50

185
checked on Apr 17, 2024

Download(s)

29
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric