Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5312
DC FieldValueLanguage
dc.contributor.authorallEtiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2009-12-03T09:06:33Zen
dc.date.available2009-12-03T09:06:33Zen
dc.date.issued2009-03en
dc.identifier.urihttp://hdl.handle.net/2122/5312en
dc.description.abstractRecent studies have shown that geological emissions of methane are an important greenhouse-gas source. Remarkable amounts of methane, estimated in the order of 40-60 Tg yr-1, are naturally released into the atmosphere from the Earth’s crust through faults and fractured rocks. The main source is natural gas, both microbial and thermogenic, produced in hydrocarbon-prone sedimentary basins and injected into the atmosphere through macro-seeps (onshore and offshore mud volcanoes and other seeps) and microseepage, an invisible but pervasive flux from the soil. This source is now evaluated for Europe on the basis of a literature survey, new field measurements and derived emission factors. The up-scaling criteria recommended by the EMEP/CORINAIR guidelines are applied to the local point and area source data. In Europe, 25 countries host oil and/or natural gas reservoirs and potentially, or actually, emit geological methane. Flux data, however, are available only from 10 countries: the onshore or offshore petroliferous sectors of Denmark, Italy, Greece, Romania, Spain, Switzerland, United Kingdom and Black Sea countries (Bulgaria, Ukraine, Georgia). Azerbaijan, whose emissions due to mud volcanism are known to be relevant, is included in the estimate. The sum of emissions, regional estimates and local measurements, related to macro-seeps leads to a conservative total value of about 2.2 Tg yr-1. Together with the potential microseepage fluxes from the petroliferous basins, estimated on the basis of the Total Petroleum System concept (around 0.8 Tg yr-1), the total European seepage is projected to 3 Tg yr-1. This preliminary figure would represent, in terms of magnitude, the second natural methane source for Europe after wetlands. The estimate will have to be refined by increasing the number of seepage measurements both on lands, where there is high potential for microseepage (e.g., Germany, Hungary, Romania, Ukraine, Belarus, Russia, Georgia) and in coastal marine areas (the North Sea, the Black Sea, offshore Greece and Italy) where emission factors and the extent of the underwater seeping area are not completely known.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Ltd.en
dc.relation.ispartofAtmospheric Environmenten
dc.relation.ispartofseries7/43 (2009)en
dc.subjectMethaneen
dc.subjectNatural emissionsen
dc.subjectGeological sourcesen
dc.subjectSeepageen
dc.titleNatural emissions of methane from geological seepage in Europeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1430-1443en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.identifier.doi10.1016/j.atmosenv.2008.03.014en
dc.relation.referencesAbrams, M.A., 2005. Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Marine and Petroleum Geology 22, 457e477. Ali-Zade, A., Shnyokov, E., Grigorianz, B., Aliev, A., Rahmanov, R., 1984. Geotectonic conditions of mud volcano manifestation on the Earth and their significance for oil and gas prospects (in Russian). In: Proceedings of the 27th World Geological Congress, vol. C13, pp. 166e172. Dando, P.R., O’Hara, S.C.M., Schuster, U., Taylor, L.J., Clayton, C.J., Baylis, S., Laier, T., 1994. Gas seepage from a carbonate-cemented sandstone reef on the Kattegat coast of Denmark. Marine and Petroleum Geology 11 (2), 182e189. Denman, K.L., et al., 2007. Climate change 2007: the physical science basis. In: Solomon, S., et al. (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA (Chapter 7). Dimitrov, L., 2002. Mud volcanoesdthe most important pathway for degassing deeply buried sediments. Earth-Science Review 59, 49e76. Dimitrov, L., Vassilev, A., 2003. Black Sea gas seepage and venting structures and their contribution to atmospheric methane. Annual of univ. of mining and geology ‘‘St.Ivan Rilski’’, 46, part I. Geology and Geophysics. Sofia, 331e336. EEA, 2004, JointEMEP/CORINAIR Atmospheric Emission Inventory Guidebook, 4th ed. European Environment Agency, Copenhagen. Available at hhttp://reports.eea.eu.int/EMEPCORINAIR4/eni. ENI, 2004. World oil & gas review. ENI, 209. Etiope, G., 2004. GEMdgeologic emissions of methane, the missing source in the atmospheric methane budget. Atmospheric Environment 38 (19), 3099e3100. Etiope, G., Klusman, R.W., 2002. Geologic emissions of methane to the atmosphere. Chemosphere 49, 777e789. Etiope, G., Milkov, A.V., 2004. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environmental Geology 46, 997e1002. Etiope, G., Klusman, R.W., 2008. Microseepage in drylands: flux and implications in the global atmospheric source/sink budget of methane. Global Planetary Changes, in press. Etiope, G., Caracausi, A., Favara, R., Italiano, F., Baciu, C., 2002. Methane emission from the mud volcanoes of Sicily (Italy). Geophysical Research Letters 29 (8), 1215, doi:10.1029/ 2001GL014340. Etiope, G., Caracausi, A., Favara, R., Italiano, F., Baciu, C., 2003. Reply to comment by A. Kopf on ‘‘methane emission from the mud volcanoes of Sicily (Italy)’’, and notice on CH4 flux data from European mud volcanoes. Geophysical Research Letters 30 (2), 1094, doi:10.1029/2002GL016287. Etiope, G., Baciu, C., Caracausi, A., Italiano, F., Cosma, C., 2004. Gas flux to the atmosphere from mud volcanoes in eastern Romania. Terra Nova 16, 179e184. Etiope, G., Feyzullayev, A., Baciu, C.L., Milkov, A.V., 2004. Methane emission from mud volcanoes in eastern Azerbaijan. Geology 32 (6), 465e468. Etiope, G., Papatheodorou, G., Christodoulou, D., Ferentinos, G., Sokos, E., Favali, P., 2006. Methane and hydrogen sulfide seepage in the NW Peloponnesus petroliferous basin (Greece): origin and geohazard. American Association of Petroleum Geologists Bulletin 90 (5), 701e713. Etiope, G., Fridriksson, T., Italiano, F., Winiwarter, W., Theloke, J., 2007. Natural emissions of methane from geothermal and volcanic sources in Europe. Journal of Volcanology and Geothermal Research 165, 76e86, doi:10.1016/j.jvolgeores.2007.04.014. Etiope, G., Martinelli, G., Caracausi, A., Italiano, F., 2007. Methane seeps and mud volcanoes in Italy: gas origin, fractionation and emission to the atmosphere. Geophysical Research Letters 34, L14303, doi:10.1029/2007GL030341. Etiope, G., Milkov, A.V., Derbyshire, E., 2008. Did geologic emissions of methane play any role in Quaternary climate change? Global Planetary Change 61, 79e88. Garcia-Gil, S., 2003. A natural laboratory for shallow gas: the Rıas Baixas (NW Spain). Geo-Marine Letters 23, 215e229. Greber, E., Leu, W., Bernoulli, D., Schumacher, M.E., Wyss, R., 1997. Hydrocarbon provinces in the Swiss southern Alpsda gas geochemistry and basin modelling study. Marine and Petroleum Geology 14 (1), 3e25. Guliyev, I.S., Feyzullayev, A.A., 1997. All about Mud Volcanoes. Baku Pub. House, Nafta-Press. 120pp. Ho¨glund-Isaksson, L., Mechler, R., 2005. The GAINS Model for Greenhouse GasesdVersion 1.0: Methane (CH4). Interim Report IR-05-054, International Institute for Applied Systems Analysis, Laxenburg, Austria, 82pp. Hornafius, J.S., Quigley, D., Luyendyk, B.P., 1999. The world’s most spectacular marine hydrocarbon seeps (coal oil point, Santa Barbara channel, California): quantification of emissions. Journal of Geophysical Research 104, 20,703e20,711. Hunt, J.M., 1996. Petroleum Geochemistry and Geology. W.H. Freeman and Co., New York. 743pp. Jakubov, A.A., Alizade, A.A., Zeinalov, M.M., 1971. Mud volcanoes of Azerbaijan SSR. Atlas: Baku, Elm. 257pp (in Russian). Judd, A.G., 2004. Natural seabed seeps as sources of atmospheric methane. Environmental Geology 46, 988e996. Judd, A.G., Hovland, M., 2007. Seabed Fluid Flow: Impact on Geology, Biology and the Marine Environment. Cambridge University Press, Cambridge. Web material: hwww.cambridge. org/catalogue/catalogue.asp?isbn¼9780521819503&ss¼resi. Judd, A.G., Davies, J., Wilson, J., Holmes, R., Baron, G., Bryden, I., 1997. Contributions to atmospheric methane by natural seepages on the UK continental shelf. Marine Geology 137, 165e189. Judd, A.G., Hovland, M., Dimitrov, L.I., Garcia Gil, S., Jukes, V., 2002a. The geological methane budget at continental margins and its influence on climate change. Geofluids 2, 109e126. Judd, A.G., Sim, R., Kingston, P., McNally, J., 2002b. Gas seepage on an intertidal site: Torry Bay, firth of forth. Scotl. Continental Shelf Research 22, 2317e2331. Judd, A.G., Croker, P., Tizzard, L., Voisey, C., 2007. Extensive methane-derived authigenic carbonates in the Irish Sea. Geo- Marine Letters 27, 259e268. Kessler, J.D., Reeburgh, W.S., Southon, J., Seifert, R., Michaelis, W., Tyler, S.C., 2006. Basin-wide estimates of the input of methane from seeps and clathrates to the Black sea. Earth and Planetary Science Letters 243, 366e375. Klusman, R.W., Jakel, M.E., LeRoy, M.P., 1998. Does microseepage of methane and light hydrocarbons contribute to the atmospheric budget of methane and to global climate change? Association for Petroleum and Geochemical Exploration Bulletin 11, 1e55. Klusman, R.W., Leopold, M.E., LeRoy, M.P., 2000. Seasonal variation in methane fluxes from sedimentary basins to the atmosphere: results from chamber measurements and modeling of transport from deep sources. Journal of Geophysical Research 105D, 24,661e24,670. Kopf, A.J., 2002. Significance of mud volcanism. Review of Geophysics 40 (2), 1005, doi:10.1029/2000RG000093. Kvenvolden, K.A., 1988. Methane hydrate and global climate. Global Biogeochemical Cycles 2, 221e229. Kvenvolden, K.A., Rogers, B.W., 2005. Gaia’s breathdglobal methane exhalations. Marine and Petroleum Geology 22, 579e 590. Kvenvolden, K.A., Lorenson, T.D., Reeburgh, W., 2001. Attention turns to naturally occurring methane seepage. EOS 82, 457. Lacroix, A.V., 1993. Unaccounted-for sources of fossil and isotopically enriched methane and their contribution to the emissions inventory: a review and synthesis. Chemosphere 26, 507e557. Lassey, K.R., Lowe, D.C., Smith, A.M., 2007. The atmospheric cycling of radiomethane and the ‘‘fossil fraction’’ of the methane source. Atomospheric Chemistry and Physics 7, 2141e2149. Lelieveld, J., Crutzen, P.J., Dentener, F.J., 1998. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus 50B, 128e150. Magoon, L.B., Schmoker, J.W., 2000. The Total Petroleum Systemdthe natural fluid network that constraints the assessment units. US Geological Survey World Petroleum Assessment 2000. Description and results. USGS Digital Data Series 60,World Energy Assessment Team, 31pp. Milkov,A.V., 2000.Worldwide distribution of submarinemud volcanoes and associated gas hydrates. Marine Geology 167 (1e2), 29e42. Milkov, A.V., Sassen, R., Apanasovich, T.V., Dadashev, F.G., 2003. Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean. Geophysical Research Letters 30 (2), 1037, doi:10.1029/2002GL016358. Prather, M., et al., 2001. Atmospheric chemistry and greenhouse gases, in climate change 2001: the scientific basis. In: Houghton, J.T., Ding, Y., Griggs, D.J., Nogeur, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (Eds.), Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 239e287. Schimel, D., et al., 1996. In: Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., Maskell, K. (Eds.), Radiative Forcing of Climate Change, in Climate Change 1995: The Science of Climate Change. Cambridge University Press, Cambridge, UK, pp. 65e131. Schmale, O., Greinert, J., Rehder, G., 2005. Methane emission from high-intensity marine gas seeps in the Black sea into the atmosphere. Geophysical Research Letters 32, L07609, doi:10.1029/ 2004GL021138. Schumacher, D., Abrams, M.A., 1996. Hydrocarbon migration and its near surface expression. American Association of Petroleum Geologists, Memoir 66, 446. Simpson, D., Winiwarter, W., Borjesson, G., Cinderby, S., Ferreiro, A., Guenther, A., Nicjolas Hewitt, C., Janson, R., Aslam, M., Khalil, K., Owen, S., Pierce, T.E., Puxbaum, H., Shearer, M., Skiba, U., Steinbrecher, R., Tarrason, L., Oquist, M.G., 1999. Inventorying emissions from nature in Europe. Journal of Geophysical Research 104 (D7), 8113e8152. Thielemann, T., Lucke, A., Schleser, G.H., Littke, R., 2000. Methane exchange between coal-bearing basins and the atmosphere: the Ruhr Basin and the Lower Rhine Embayment, Germany. Organic Geochemistry 31, 1387e1408. Tizzard, L.H., 2008. The contribution to atmospheric methane from sub-seabed sources in the UK continental shelf. Unpublished Ph.D. Thesis, University of Newcastle upon Tyne, UK, 329pp. Tkeshelashvili, G.I., Egorov, V.N., Mestvirishvili, S.A., Parkhaladze, G.S., Gulin, M.B., Gulin, S.B., Artemov, Y.G., 1997. Methane emissions from the Black sea bottom in the mouth zone of the Supsa river at the coast of Georgia. Geochemistry International 35, 284e288. USGS World Energy Assessment Team, 2000, US Geological Survey World Petroleum Assessment 2000. Description and Results. Digital Data Series-DDS-60. US Department of the Interior, USGS. Wagner, M., Wagner, M., Piske, J., Smit, R., 2002. Case histories of microbial prospection for oil and gas, onshore and offshore northwest Europe. In: Schumacher, D., LeSchack, L.A. (Eds.), Surface Exploration Case Histories: Applications of Geochemistry, Magnetics and Remote Sensing, AAPG Studies in Geology No. 48 and SEG Geophys. Ref. Series No. 11, pp. 453-479.en
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorEtiope, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-8614-4221-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Etiope2009-AE-geoCHe-Europe.pdfmain article716.62 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

80
checked on Feb 10, 2021

Page view(s) 5

1,197
checked on Apr 17, 2024

Download(s)

41
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric