Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/527
DC FieldValueLanguage
dc.contributor.authorallDi Liberto, V.; Dipartimento di Chimica e Fisica della Terra ed Applicazioni, Universita' di Palermo, Via Archirafi 36, 90123 Palermo, Italyen
dc.contributor.authorallNuccio, P. M.; Dipartimento di Chimica e Fisica della Terra ed Applicazioni, Universita' di Palermo, Via Archirafi 36, 90123 Palermo, Italyen
dc.contributor.authorallPaonita, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2005-11-04T09:34:31Zen
dc.date.available2005-11-04T09:34:31Zen
dc.date.issued2002en
dc.identifier.urihttp://hdl.handle.net/2122/527en
dc.description.abstractChlorine- and sulphur-bearing compounds in fumarole discharges of the La Fossa crater at Vulcano Island (Italy) can be modelled by a mixing process between magmatic gases and vapour from a boiling hydrothermal system. This allows estimating the compounds in both endmembers. Magma degassing cannot explain the time variation of sulphur and HCl concentrations in the deep endmember, which are more probably linked to reactions of solid phases at depth, before mixing with the hydrothermal vapours. Based on the P^T conditions and speciation of the boiling hydrothermal system below La Fossa, the HCl and Stot contents in the hydrothermal vapours were used to compute the redox conditions and pH of the aqueous solution. The results suggest that the haematite magnetite buffer controls the hydrothermal fO2 values, while the pH has increased since the end of the 1970s. The main processes affecting pH values may be linked to Na^Ca exchanges between evolved seawater, feeding the boiling hydrothermal system, and local rocks. While Na is removed from water, calcium enters the solution, undergoes hydrolysis and produces HCl,lowering the pH of the water. The increasing water^rock ratio within the hydrothermal system lowers the Ca availability, so the aqueous solution becomes less acidic. Seawater flowing towards the boiling hydrothermal brine dissolves a large quantity of pyrite along its path. In the boiling hydrothermal system, dissolved sulphur precipitates as pyrite and anhydrite, and becomes partitioned in vapour phase as H2S and SO2. These results are in agreement with the paragenesis of hydrothermal alteration minerals recovered in drilled wells at Vulcano and are also in agreement with the isotopic composition of sulphur emitted by the crater fumaroles.en
dc.format.extent539 bytesen
dc.format.extent498111 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries116(2002)en
dc.subjectchlorineen
dc.subjectsulphuren
dc.subjecthydrothermal systemen
dc.subjectgenetic processesen
dc.subjectVulcano Islanden
dc.titleGenesis of chlorine and sulphur in fumarolic emissions at Vulcano Island (Italy) : assessment of pH and redox conditions in the hydrothermal systemen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber137-150en
dc.identifier.URLhttp://www.sciencedirect.com/en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamicsen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.01. Geochemical dataen
dc.relation.referencesBadalamenti, B., Chiodini, G., Cioni, R., Favara, R., Francofonte,S., Gurrieri, S., Hauser, S., Inguaggiato, S., Italiano,F., Magro, G., Nuccio, P.M., Parello, F., Pennini, M., Romeo,L., Russo, M., Sortino, F., Valenza, M., Vurro, F.,1991. Special Field Workshop at Vulcano (Aeolian Islands)during summer 1988: Geochemical results. Acta Vulcanol. 1, 223-227. Bale, C.W., Pelton, A.D., Thompson, W.T., 2001. Web FACT - Facility for the Analysis of Chemical Thermodynamics,http://www.crct.polymtl.ca/FACT/factwhat.htm,Ecole Polytechnique de Montréal, Montreal, QC. Bischo¡, J.L., Rosenbauer, R.J., Fournier, R.O., 1996. The generation of HCl in the system CaCl2-H2O: Vapour-liquid relations from 380-500°C. Geochim. Cosmochim. Acta 60,7-16. Bolognesi, L., D'Amore, F., 1993. Isotopic variation of the hydrothermal system on Vulcano Island, Italy. Geochim. Cosmochim. Acta 9, 2069-2082. Brimhall, G.H., Crerar, D.A., 1987. Ore fluids: Magmatic to supergene. In: Carmichael, I.S.E., Eugster, H.P. (Eds.),Thermodynamic Modeling of Geologic Materials: Minerals,Fluids and Melts. Rev. Mineral. 17, 235-322. Bukumirovic, T., Italiano, F., Nuccio, P.M., 1997. The evolution of a dynamic geological system: The support of a GIS for geochemical measurements at the fumarole field of Vulcano, Italy. J. Volcanol. Geotherm. Res. 79, 253-263. Capasso, G., Dongarra', G., Hauser, S., Favara, R., Valenza,M., 1992. Isotope composition of rain water, well water and fumarole steam on the Island of Vulcano, and their implications for volcanic surveillance. J. Volcanol. Geotherm. Res. 49, 147-155. Capasso, G., Inguaggiato, S., Nuccio, P.M., Pecoraino, G.,Sortino, F., 1994. Chemical variations in the fumarolic gases of La Fossa crater (Vulcano Island). Acta Volcanol. 6, 41-43. Capasso, G., Favara, R., Inguaggiato, S., 1997. Chemical features and isotopic gaseous manifestation on Vulcano Island (Aeolian Island): An interpretative model of fluid circulation. Geochim. Cosmochim. Acta 61, 3425-3442. Capasso, G., Favara, R., Francofonte, S., Inguaggiato, S.,1999. Chemical and isotopic variations in fumarolic discharge and thermal waters at Vulcano Island (Aeolian Island, Italy) during 1996: Evidence of resumed volcanic activity. J. Volcanol. Geotherm. Res. 88, 167-175. Carapezza, M., Nuccio, P.M., Valenza, M., 1981. Genesis and evolution of the fumaroles of Vulcano (Aeolian Islands,Italy): A geochemical model. Bull. Volcanol. 44, 547-563. Cavaretta, G., Tecce, F., Serracino, M., De Vivo, B., 1988. Fluid inclusions, sulphur, strontium isotopes in hydrothermal anhydrite from the Isola di Vulcano-1 deep well, Aeolian Islands, Italy. Rend. Soc. Ital. Mineral. Petrol. 43, 975-985. Chiodini, G., Cioni, R., Marini, L., 1993. Reactions governing the chemistry of crater fumaroles from Vulcano Island,Italy, and implications for volcanic surveillance. Appl. Geochem. 8, 357-371. Chiodini, G., Cioni, R., Marini, L., Panichi, C., 1995. Origin of fumarolic fluids of Vulcano Island, Italy and implications for volcanic surveillance. Bull. Volcanol. 57, 99-110. Chiodini, G., Allard, P., Caliro, S., Parello, F., 2000. 18O exchange between steam and carbon dioxide in volcanic and hydrothermal gases: Implications for the source of water. Geochim. Cosmochim. Acta 64, 2479-2488. Cioni, R., D'Amore, F., 1984. A genetic model for the fumaroles of Vulcano Island (Sicily, Italy). Geothermics 13, 375-384. Clocchiatti, R., Del Moro, A., Gioncada, A., Joron, J.L., Mosbah,M., Pinarelli, L., Sbrana, A., 1994. Assessment of a shallow magmatic system: The 1988-6-90 eruption, Vulcano Island, Italy. Bull. Volcanol. 56, 466-486. Cortecci, G., Ferrara, G., Maiorani, A., Turi, B., 1992. Stable isotopes in volcanic fluids and rocks at Vulcano (Sicily,Italy). In: Kharaka, Y.K., Maest, A.S. (Eds.), Proc. 7th Int. Symp. Water-Rock Interaction. Balkema, Rotterdam, pp. 911-914. Cortecci, G., Ferrara, G., Dinelli, E., 1996. Isotopic time-variations and variety of sources for sulphur in fumaroles at Vulcano island, Aeolian archipelago, Italy. Acta Vulcanol. 8, 147-160. Cortecci, G., Dinelli, E., Bolognesi, L., Boschetti, T., Ferrara,G., 2001. Chemical and isotopic composition of water and dissolved sulfate from shallow wells on Vulcano Island, Aeolian Archipelago, Italy. Geothermics 30, 69-91. Davies, P.C.W., 1977. Thermodynamics and cosmology. In:The Physics of Time Asymmetry. University of California Press, Berkeley, CA, pp. 23-44. Ellis, A.J., Mahon, W.A.J., 1977. Chemistry and Geothermal System. Academic Press, New York. Eugster, H.P., Wones, D.R., 1962. Stability field of ferruginous biotite, annite. J. Petrol. 3, 82. Faraone, D., Silvano, A., Verdini, G., 1986. The monzogabbroic intrusion in the Island of Vulcano, Aeolian archipelago,Italy. Bull. Volcanol. 48, 299-307. Fournier, R.O., 1985. Continental scientific drilling to investigate brine evolution and fluid circulation in active hydrothermal systems. In: Raleigh, C.B. (Ed.), Observation of the Continental Crust through Drilling. Springer, Berlin,pp. 98-122. Fournier, R.O., 1985. The behavior of silica in hydrothermal solutions. In: Berger, B.R., Bethke, P.M. (Eds.), Geology and Geochemistry of Epithermal Systems. Rev. Econ. Geol. 2, 45-61. Fournier, R.O., 1987. Conceptual Models of Brine Evolution in Magmatic-Hydrothermal Systems. USGS Prof. Pap. 1350, 1487-1506. Giggenbach, W.F., 1987. Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl. Geochem. 2, 143-161. Giggenbach, W.F., 1996. Chemical composition of volcanic gases. In: Scarpa, R., Tilling H.I. (Eds.), Monitoring and Mitigation of Volcano Hazards. Springer, Berlin, pp. 222-256. Hannet, R.W., Crerar, D., Schwartz, J., 1988. Organic complexes in hydrothermal systems. Econ. Geol. 83, 742-764. Helgeson, H.C., Kirkham, D.H., Flowers, G.C., 1981. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures : IV. Calculation of the activity coefficients, osmotic coefficients,and apparent molal and standard and relative partial molar properties to 600°C and 5 kb. Am. J. Sci. 281, 1249-1516. Holland, H.D., Malinin, S.D., 1979. The solubility and occurrence of non-ore minerals. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits. Wiley, New York, pp. 461-503. Italiano, F., Nuccio, P.M., Valenza, M., 1984. Geothermal energy and mass release at Vulcano, Aeolian Island, Italy. Rend. Soc. Ital. Mineral. Petrol. 39, 379-386. Italiano, F., Pecoraino, G., Nuccio, P.M., 1997. Steam output from fumaroles of an active volcano: Tectonic and magmatic-hydrothermal controls on the degassing system at Vulcano (Aeolian arc). J. Geophys. Res. 103, 29829-29842. Jiang, S., Pitzer, K.S., 1996. Phase equilibria and volumetric properties of aqueous CaCl2 by an equation of state. AIChE J. 42, 585-594. Johnson, J.W., Oelkers, E.H., Helgeson, H.C., 1992. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0°C to 1000°C. Comput. Geosci. 18, 899-947. La Volpe, L., Dellino, P., Nuccio, P.M., Privitera, E., Sbrana, A., 1997. Progetto Vulcano: Risultati dell'Attivita' di Ricerca 1993-95. Felici, Pisa, 284 pp. Nuccio, P.M., Paonita, A., 2001. Magmatic degassing of multicomponent vapours and assessment of magma depth: Application to Vulcano Island (Italy). Earth Planet. Sci. Lett.,193, 467-481. Nuccio, P.M., Paonita, A., Sortino, F., 1998. Hydrothermal system evolution induced by magma degassing: The case of Vulcano. In: Arehart, G.B., Hulston, J.R. (Eds.),Water-Rock Interaction WRI-9. Balkema, Rotterdam, pp. 475-478. Nuccio, P.M., Paonita, A., Sortino, F., 1999. Geochemical modeling of mixing between magmatic and hydrothermal gases: The case of Vulcano, Italy. Earth Planet. Sci. Lett. 167, 321-333. Ohomoto, H., 1986. Stable isotope geochemistry of ore deposits. In: Valley, J.W., Taylor, H.P., O'Neil, J.R. (Eds.), Stable Isotopes in High Temperature Geological Processes. Rev. Mineral. 16, 491-560. Ohomoto, H., Goldhaber, M.B., 1997. Sulphur and carbon isotopes. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits, 3rd edn. Wiley, New York, pp. 517-612. Ohomoto, H., Losaga, A.C., 1982. Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim. Cosmochim. Acta 46, 1727-1745. Panichi, C., Noto, P., 1992. Isotopic and chemical composition of water, steam and gas samples of the natural manifestations of the Island of Vulcano (Aeolian Arc, Italy). Acta Vulcanol. 2, 297-312. Paonita, A., Favara, R., Nuccio, P.M., Sortino, F., 2001. Genesis of fumarolic emissions as inferred by isotope mass balances: CO2 and water at Vulcano Island. Italy. Geochim. Cosmochim. Acta, 66, 759-772. Parkhurst, D.L., Appelo, C.A.J., 1999. PHREEQC code: A computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculation. US Department of the Interior, US Geological Survey, Washington, DC. Shinoara, H., 1994. Exolution of immiscible vapour and liquid phases from crystallizing silicate melt: Implication for chlorine and metal transport. Geochim. Cosmochim. Acta 23,5215-5221. Shinoara, H., Iiyama, J.T., Matsuo, S., 1989. Partition of chlorine compounds between silicate melts and hydrothermal solutions. Geochim. Cosmochim. Acta 53, 2617-2630. Signorelli, S., Carroll, M.R., 2000. Solubility and fluid-melt partitioning in hydrous phonolithic melts. Geochim. Cosmochim. Acta 64, 2851-2862. Silvano, A., 1985. Le recherche géothermique a l'ile de Vulcano.Géotherm. Actual. 1, 27-31. Tedesco, D., 1995. Fluid geochemistry at Vulcano Island: A change in volcanic regime or fluctuations in the mixing of different systems? J. Geophys. Res. 100, 4157-4167. Truesdell, A.H., Haizlip, J.R., Armannsson, H., D'Amore, F.,1989. Origin and transport of chloride in superheated geothermal steam. Geothermics 18, 295-304. Webster, J.D., Kinzler, J.R., Mathez, E.A., 1999. Chloride and water solubility in basalt and andesite melts and implications for magmatic degassing. Geochim. Cosmochim. Acta 63, 729-738.en
dc.description.fulltextpartially_openen
dc.contributor.authorDi Liberto, V.en
dc.contributor.authorNuccio, P. M.en
dc.contributor.authorPaonita, A.en
dc.contributor.departmentDipartimento di Chimica e Fisica della Terra ed Applicazioni, Universita' di Palermo, Via Archirafi 36, 90123 Palermo, Italyen
dc.contributor.departmentDipartimento di Chimica e Fisica della Terra ed Applicazioni, Universita' di Palermo, Via Archirafi 36, 90123 Palermo, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDip CFTA, Univ. Palermo-
crisitem.author.deptUniversità di Palermo-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0001-9124-5027-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Di Liberto et al. JVGR 2002.pdfMain article486.44 kBAdobe PDF
Redirect Elsevier.htmlRedirect-Elsevier539 BHTMLView/Open
Show simple item record

Page view(s) 10

384
checked on Mar 27, 2024

Download(s)

85
checked on Mar 27, 2024

Google ScholarTM

Check