Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/526
DC FieldValueLanguage
dc.contributor.authorallPaonita, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallFavara, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallNuccio, P. M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallSortino, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2005-11-03T14:52:15Zen
dc.date.available2005-11-03T14:52:15Zen
dc.date.issued2002en
dc.identifier.urihttp://hdl.handle.net/2122/526en
dc.description.abstractWe have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result,the H2O and CO2 content and the dD, d18O, and d13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits. The d13CCO2 of the magmatic gases varies around -3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (-1 to -35‰ vs. standard mean ocean water [SMOW]), as well as the above d13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect. The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the dD and d13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and -2 to -6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (dDH2O 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks, reaching oxygen isotope equilibrium at high temperatures. Interaction processes between magmatic gases and the evolving seawater also seem to occur, causing the dissolution of isotopically fractionated aqueous CO2 and providing the source for hydrothermal carbon. These results have important implications concerning fluid circulation beneath Vulcano and address the more convenient routine of geochemical surveillance.en
dc.format.extent539 bytesen
dc.format.extent593620 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofGeochimica et Cosmochimica Actaen
dc.relation.ispartofseries5/66(2002)en
dc.subjectisotope geochemistryen
dc.subjectvolcanic gasesen
dc.subjectmixing modelingen
dc.titleGenesis of fumarolic emissions as inferred by isotope mass balances: CO2 and water at Vulcano Island, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber759–772en
dc.identifier.URLhttp://www.sciencedirect.com/en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.01. Geochemical dataen
dc.relation.referencesAllard P. (1983) The origin of hydrogen, carbon, sulphur, nitrogen, and rare gases in volcanic exhalations: Evidence from isotope geochemistry. In Forecasting Volcanic Events (eds. H. Tazieff and J. C. Sabroux), pp. 337–386. Elsevier, Amsterdam, the Netherlands. Allard P., Carbonelle J., Dajlevic D., Le Bronec J, Morel P. Robe M. C., Maurenas J. M., Faivre-Pierret R., Martin D., Sabroux J. C., and Zettwoog P. (1991) Eruptive and diffusive emissions of CO2 from Mount Etna. Nature 351, 387–391. Badalamenti B., Gurrieri S., Hauser S., Tonani F, and Valenza M. (1984) Considerazioni sulla concentrazione e sulla composizione isotopica della CO2 presente nelle manifestazioni naturali e nell’atmosfera dell’isola di Vulcano. Rend. Soc. Ital. Mineral. Petrol. 39, 367–378. Badalamenti B., Chiodini G., Cioni R., Favara R., Francofonte S., Gurrieri S., Hauser S., Inguaggiato S., Italiano F., Magro G., Nuccio P. M., Parello F., Pennisi M., Romeo L., Russo M., Sortino F.,Valenza M., and Vurro F. (1991) Special field workshop at Vulcano (Aeolian Islands) during summer 1988: Geochemical results. Acta Vulcanol. 1, 223–227. Barnes H. L. (1997) Geochemistry of Hydrothermal Ore Deposits. John Wiley, New York. Bolognesi L. (1999) Comment on “Chemical features and isotopic gaseous manifestation on Vulcano Island (Aeolian Island): An interpretative model of fluid circulation” by G. Capasso, R. Favara, S. Inguaggiato. Geochim. Cosmochim. Acta 63, 2467–2469. Bolognesi L. and D’Amore F. (1993) Isotopic variation of the hydrothermal system on Vulcano Island, Italy. Geochim. Cosmochim. Acta 57, 2069–2082. Bowers T. S. and Helgeson H. C. (1983) Calculation of the thermodynamic and geochemical consequences of non-ideal mixing in the system H2O-CO2-NaCl on the phase relation in geologic systems:Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochim. Cosmochim. Acta 47, 1247–1275. Bukumirovic T., Italiano F., and Nuccio P. M. (1997) The evolution of a dynamic geological system: The support of a GIS for geochemical measurements at the fumarole field of Vulcano, Italy. J. Volcanol. Geotherm. Res. 79, 253–263. Cannata S., Hauser S., Parello F., and Valenza M. (1988) Caratterizzazione isotopica della CO2 presente nelle manifestazioni gassose dell’isola di Vulcano. Rend. Soc. Ital. Mineral. Petrol. 43, 153–161. Capasso G., Dongarra` G., Hauser S., Favara R., and Valenza M. (1992)Isotope composition of rain water, well water and fumarole steam on the island of Vulcano, and their implications for volcanic surveillance. J. Volcanol. Geotherm. Res. 49, 147–155. Capasso G., Favara R., and Inguaggiato S. (1997) Chemical features and isotopic gaseous manifestation on Vulcano Island (Aeolian Island): An interpretative model of fluid circulation. Geochim. Cosmochim. Acta 61, 3425–3442. Capasso G., Favara R., Francofonte S., and Inguaggiato S. (1999a)Chemical and isotopic variations in fumarolic discharge and thermal waters at Vulcano Island (Aeolian Island, Italy) during 1996: Evidence of resumed volcanic activity. J. Volcanol. Geotherm. Res. 88,167–175. Capasso G., Favara R., and Inguaggiato S. (1999b) Reply to the comment by Bolognesi. Geochim. Cosmochim. Acta 63, 2471–2474. Carapezza M., Nuccio P. M., and Valenza M. (1981) Genesis and evolution of the fumaroles of Vulcano (Aeolian Islands, Italy): A geochemical model. Bull. Volcanol. 44, 3, 547–563. Chiodini G., Cioni R., and Marini L. (1993) Reactions governing the chemistry of crater fumaroles from Vulcano Island, Italy, and implications for volcanic surveillance. Appl. Geochem. 8, 357–371. Chiodini G., Cioni R., Marini L., and Panichi C. (1995) Origin of fumarolic fluids of Vulcano Island, Italy and implications for volcanic surveillance. Bull. Volcanol. 57, 99–110. Chiodini G., Cioni R., Marini L., and Panichi C. (1996) Reply to comment by L. Bolognesi. Bull. Volcanol. 58, 321–322. Chiodini G., Allard P., Caliro S., and Parello F. (2000) 18O exchange between steam and carbon dioxide in volcanic and hydrothermal gases. Implications for the source of water. Geochim. Cosmochim.Acta 64, 2479–2488. Cioni R. and D’Amore F. (1984) A genetic model for the fumaroles of Vulcano Island (Sicily, Italy). Geothermics 13, 375–384. Cortecci R., Ferrara G., Maiorana A., and Turi B. (1992) Stable isotopes in volcanic fluids and rocks at Vulcano (Sicily, Italy). In Water-Rock Interaction WRI-7 (eds. Y. K. Kharaka and A. S. Maest), pp. 911–914. De Astis G., La Volpe L., Peccerillo A., and Civetta L. (1997) Evoluzione vulcanologica e magmatologia dell’isola di Vulcano. In Progetto Vulcano: Risultati dell’Attivita` di Ricerca 1993-95 (eds. L. La Volpe, P. Dellino, P. M. Nuccio, E. Privitera, and A. Sbrana), pp. 155–177. Felici Editore, Pisa, Italy. Driesner T. and Seward T. M. (2000) Experimental and simulation study of salt effects and pressure/density effects on oxygen and hydrogen stable isotope liquid-vapor fractionation for 4-5 molal aqueus NaCl and KCl solutions at 400°C. Geochim. Cosmochim. Acta 64, 1774–1784. Ellam R. M. and Harmon R. S. (1990) Oxygen isotope constraints on the crustal contribution to the subduction-related magmatism of the Aeolian Islands, southern Italy. J. Volcanol. Geotherm. Res. 44,105–222. Falsaperla S., Frazzetta G., Neri G., Nunnari G., Velardita R., and Villari L. (1989) Volcano monitoring in the Aeolian Islands (South Tyrrhemian Sea): The Lipari-Vulcano eruptive complex. In IAVCEI Proceedings in Volcanology (ed. J. H. Latter), pp. 339–356. Springer, Berlin, Germany. Faraone D., Silvano A., and Verdini G. (1986) The monzogabbroic intrusion in the island of Vulcano, Aeolian Arcipelago, Italy. Bull. Vulcanol. 48, 299–307. Faure G. (1986) Principles of Isotope Geology. John Wiley, New York. Fulignati P., Gioncada A., and Sbrana A. (1997) Modello idrogeologico del sistema idrotermale-magmatico di Vulcano. In Progetto Vulcano: Risultati dell’Attivita` di Ricerca 1993-95 (eds. L. La Volpe, P. Dellino, P. M. Nuccio, E. Privitera, and A. Sbrana), pp. 97–118. Felici Editore, Pisa, Italy. Gasparini C., Iannaccone G., and Scarpa R. (1982) Seismotectonic of the Calabrian arc. Tectonophysics 110, 59–78. Giggenbach W. F. (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet. Sci. Lett. 113, 495–510. Gioncada A., Sbrana A., Bottazzi P., Clocchiatti R., Del Moro A.,Joron J. L., Ottolini L., and Pinarelli L. (1997) Il sistema di alimentazione di La Fossa. In Progetto Vulcano: Risultati dell’Attivita` di Ricerca 1993-95 (eds. L. La Volpe, P. Dellino, P. M. Nuccio, E. Privitera, and A. Sbrana), pp. 178–198. Felici Editore, Pisa, Italy. Hoefs J. (1987) Stable Isotope Geochemistry. Springer-Verlag, London. Holloway J. R. and Blank J. G. (1994) Experimental results applied to C-O-H in natural melts. Rev. Mineral. 30, 231–279. Italiano F. and Nuccio P. M. (1997) Variazione del rapporto isotopico dell’elio nelle fumarole di Vulcano. In Progetto Vulcano: Risultati dell’Attivita` di Ricerca 1993-95 (eds. L. La Volpe, P. Dellino, P. M. Nuccio, E. Privitera, and A. Sbrana), pp. 124–127. Felici Editore, Pisa, Italy. Italiano F., Nuccio P. M., and Pecoraino G. (1994) Fumarolic gas output at La Fossa crater. Acta Vulcanol. 6, 39–40. La Volpe L., Dellino P., Nuccio P. M., Privitera E., and Sbrana A. (1997) Progetto Vulcano: Risultati dell’Attivita` di Ricerca 1993-95. Felici Editore, Pisa, Italy. Marty B., Trull T., Lussiez P., Basile I., and Tanguy J. C. (1994)Helium, argon, oxygen, strontium, and neodymium isotope constraints on the origin and evolution of Mount Etna magmatism. Earth Planet. Sci. Lett. 126, 23–39. Nuccio P. M. (1997) Il sistema idrotermale e fumarolico di Vulcano. In Progetto Vulcano: Risultati dell’Attivita` di Ricerca 1993-95 (eds. L. La Volpe, P. Dellino, P. M. Nuccio, E. Privitera, and A. Sbrana), pp. 9–21. Felici Editore, Pisa, Italy. Nuccio P. M. and Valenza M. (1998) Magma degassing and geochemical detection of its ascent. In Water-Rock Interaction WRI-9 (eds. G. B. Arehart and J. R. Hulston), pp. 471–474. Balkema, Rotterdam, the Netherlands. Nuccio P. M., Paonita A., and Sortino F. (1998) Hydrothermal system evolution induced by magma degassing: The case of Vulcano. In Water-Rock Interaction WRI-9 (eds. G. B. Arehart and J. R. Hulston), pp. 475–478. Balkema, Rotterdam, the Netherlands. Nuccio P. M., Paonita A., and Sortino F. (1999) Geochemical modeling of mixing between magmatic and hydrothermal gases: The case of Vulcano, Italy. Earth Planet. Sci. Lett. 167, 321–333. Ohomoto H. and Rye O. (1979) Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits (ed. H. L. Barnes), pp. 509–567. John Wiley, New York. Panichi C. and Noto P. (1992) Isotopic and chemical composition of water, steam and gas samples of the natural manifestations of the Island of Vulcano (Aeolian Arc, Italy). Acta Vulcanol. 2, 297–312. Parello F., Allard P., D’Alessandro W., Federico C., Jean-Baptiste P.,and Catani O. (2000) Isotope geochemistry of Pantelleria volcanic fluids, Sicily Channel rift: A mantle volatile end-member for volcanism in southern Europe. Earth Planet. Sci. Lett. 180, 325–339. Pareschi M. T., Ranci M., and Valenza M. (1997) Il rischio legato ad emissioni di CO2 a Vulcano. In Progetto Vulcano: Risultati dell’Attivita` di Ricerca 1993-95 (eds. L. La Volpe, P. Dellino, P. M. Nuccio, E. Privitera, and A. Sbrana), pp. 238–246. Felici Editore, Pisa, Italy. Pineau F., Shilobreeva S., Kadik A., and Javoy M. (1998) Water solubility and D/H fractionation in the system basaltic andesite-H2O at 1250°C and between 0.5 and 3 kbars. Chem. Geol. 147, 173–184. Richet P., Bottinga Y., and Javoy M. (1977) A review of H, C, N, O,S and Cl stable isotope fractionation among gaseous molecules. Ann. Rev. Earth Planet. Sci. Lett. 5, 65–110. Rimstidt J. D. (1997) Gangue mineral transport and deposition. In Geochemistry of Hydrothermal Ore Deposits (ed. H. L. Barnes), pp. 487–516. John Wiley, New York. Sheppard S. M. F. (1986) Characterization and isotopic variations in natural waters. Rev. Mineral. 16, 1–40. Taran Y. A., Pokrovsky B. G., and Esikov A. D. (1989) Deuterium and oxygen-18 in fumarolic steam and amphiboles from some Kamchatka volcanoes: “Andesitic waters.” Dokl. Akad. Nauk. USSR 304, 440–443. Taylor B. E. (1986) Magmatic volatiles: Isotopic variation of C, H and S. Rev. Mineral. 16, 185–225. Tedesco D. (1995) Fluid geochemistry at Vulcano Island: A change in volcanic regime or fluctuations in the mixing of different systems? J. Geophys. Res. 100, 4157–4167. Tedesco D. (1997) Systematic variations in the 3He/4He ratio and carbon of fumarolic fluids from active volcanic areas in Italy: Evidence for radiogenic 4He and crustal carbon addition by the subducting African plate? Earth Planet. Sci. Lett. 151, 255–269. Tedesco D. and Nagao K. (1996) Radiogenic 4He, 21Ne and 40Ar in fumarolic gases on Vulcano: Implication for the presence of continental crust beneath the island. Earth Planet. Sci. Lett. 144, 517–528. Tedesco D. and Scarsi P. (1999) Intensive gas sampling of noble gases and carbon at Vulcano Island (southern Italy). J. Geophys. Res. 104, 10499–10510. Truesdell A. H. and Hulston J. R. (1980) Isotopic evidence of environments of geothermal systems. In Handbook of Environmental Isotope Geochemistry, Vol. 1 (eds. P. Fritz and J. C. Fontes), pp. 179–219. Elsevier, Amsterdam, the Netherlands. Watson E. B. (1994) Diffusion in volatile-bearing magmas. Rev. Mineral. 30, 371–412.en
dc.description.fulltextpartially_openen
dc.contributor.authorPaonita, A.en
dc.contributor.authorFavara, R.en
dc.contributor.authorNuccio, P. M.en
dc.contributor.authorSortino, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptUniversità di Palermo-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0001-9124-5027-
crisitem.author.orcid0000-0003-4588-2935-
crisitem.author.orcid0000-0002-2400-911X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Paonita et al., Geoch. Cosmoch. Acta 2002.pdfMain article579.71 kBAdobe PDF
Redirect Elsevier.htmlRedirect-Elsevier539 BHTMLView/Open
Show simple item record

Page view(s) 10

346
checked on Apr 17, 2024

Download(s)

85
checked on Apr 17, 2024

Google ScholarTM

Check