Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Calabrese, S.*
Floor, G.H.*
D'Alessandro, W.*
Parello, F.*
Aiuppa, A.*
Roman-Ross, G.*
Title: Volcanic signature of volatile trace elements on atmospheric deposition at Mt. Etna, Italy
Editors: Podosek, F.A.; Washington University
Issue Date: Jun-2009
Keywords: trace metals
atmospheric deposition
Abstract: Volcanic volatiles and aerosol emitted into the atmosphere ultimately fall on the Earth’s surface as wet or dry deposition, and they can influence the environment and the ecosystems at local and regional scales. Therefore, atmospheric deposition plays a key-role in the geochemical cycles, redistributing volcanogenic elements to the ground. For this reason, estimating the volcanogenic trace element fluxes from the atmosphere to the surface is necessary for a better knowledge of the environmental impact of the volcanic emissions. Nevertheless, from a literature review, we have recognized the scarcity of investigation on trace element deposition in the surroundings of active volcanoes. Here, we present a chemical characterization of bulk deposition around Mt. Etna, Italy, including both major and many trace elements. Bulk depositions were collected approximately fortnightly, from April 2006 to December 2007, using a network of five rain gauges, located at various altitudes on the upper flanks around the summit craters of the volcano. For most elements highest concentrations have been found close to the emission vent, confirming the prevailing volcanic contribution to rainwater composition close to the summit craters. Comparison with contemporaneously collected plume emissions shows that deposition processes produce no evident element-to-element fractionation. By contrast, comparison with whole rock composition indicates a contrasting behaviour between volatile elements, which are highly-enriched in rainwater, and refractory elements, which have low rainwater/whole rock concentration ratios. Chemical concentrations in bulk deposition were used to estimate the deposition rates of a large suite of elements. Deposition rates for volatile trace elements like Se, As, and Cd range from 1.7, 1.2 and 0.9 µg m-2 day-1 nearby to the summit vents, to 0.5, 0.3, and 0.1 µg m-2 day-1 at the local background site on the upwind western sector.
Appears in Collections:Conference materials
05.08.01. Environmental risk
05.02.01. Geochemical data
01.01.07. Volcanic effects

Files in This Item:

File Description SizeFormatVisibility
Calabrese&al._Goldschmidt2009.pdfabstract120.66 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA