Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5175
DC FieldValueLanguage
dc.contributor.authorallCocchi, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCaratori Tontini, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMuccini, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMarani, M. P.; ISMAR-CNR, Sezione di Geologia Marina, Via Gobetti 101, 40129 Bologna, Italyen
dc.contributor.authorallBortoluzzi, G.; ISMAR-CNR, Sezione di Geologia Marina, Via Gobetti 101, 40129 Bologna, Italyen
dc.contributor.authorallCarmisciano, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2009-09-16T12:40:41Zen
dc.date.available2009-09-16T12:40:41Zen
dc.date.issued2009-09-09en
dc.identifier.urihttp://hdl.handle.net/2122/5175en
dc.description.abstractInversion of new high-resolution magnetic data from the Marsili seamount and the surrounding basin in the Tyrrhenian Sea reveals NNE–SSW magnetization stripes ranging from the Matuyama chron to the Brunhes chron, including the short positive Jaramillo subchron. The detailed magnetic chronology shows that from the late Matuyama (1.77 Ma), the average half spreading rate was about 1.5 cm yr-1, with a slight decrease between the Jaramillo and the Brunhes events, when the growth of the volcanic edifice overcame lateral spreading. Analysis of spreading rate and volume of erupted lava indicates that at the beginning of the Jaramillo subchron (1.07 Ma), the Marsili basin evolved from pure horizontal spreading to a superinflated seamount as a consequence of tearing of the Ionian slab. Our data give us a snapshot of the geodynamic transition from an active backarc spreading phase to the vertical accretion of the seafloor because of a radical change in the subduction dynamics.en
dc.language.isoEnglishen
dc.publisher.nameBlackwell Publishing LTDen
dc.relation.ispartofTerra Novaen
dc.relation.ispartofseries/21 (2009)en
dc.subjectTyrrhenian Seaen
dc.subjectMarsili Seamounten
dc.subjectMagnetic Anomaliesen
dc.subjectSlab Tearen
dc.subjectChronologyen
dc.titleChronology of the transition from a spreading ridge to an accretional seamount in the Marsili backarc basin (Tyrrhenian Sea)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber369-374en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.02. Geochronologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.04. Marine geologyen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomaliesen
dc.identifier.doi10.1111/j.1365-3121.2009.00891.xen
dc.relation.referencesAmante, C. and Eakins, B.W., 2008. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce, Boulder, CO. Beccaluva, L., Rossi, P.L. and Serri, G., 1982. Neogene to Recent volcanism of the Southern Tyrrhenian–Sicilian area: implications for the geodynamic evolution of the Calabrian arc. Earth Evol. Sci., 3, 222–238. Cande, S.C. and Kent, D.V., 1995. Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 100, 6093– 6095. Caratori Tontini, F., Cocchi, L. and Carmisciano, C., 2008. Potential field inversion for a layer with uneven thickness: The Tyrrhenian Sea density model. Phys. Earth Planet. Inter., 166, 105–111. Chiarabba, C., De Gori, P. and Speranza, F., 2008. The southern Tyrrhenian subduction zone: Deep geometry, magmatism and Plio-Pleistocene evolution. Earth Planet. Sci. Lett., 268, 408–423. Doglioni, C., 1991. A proposal of kinematic modelling for W-dipping subductions - Possible applications to the Tyrrhenian - Apennines system. Terra Nova., 3, 423–434. Faggioni, O., Pinna, E., Savelli, C. and Schreider, A.A., 1995. Geomagnetism and age study of Tyrrhenian seamounts. Geophys. J. Int., 123, 915–930. Gueguen, E., Doglioni, C. and Fernandez, M., 1998. On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophysics., 298, 259– 269. Kamesh Raju, K.A., Chaubey, A.K., Amarnath, D. and Mudholkar, A., 2008. Morphotectonics of the Carlsberg Ridge between 62 20¢ and 66 20¢E, Northwest Indian Ocean. Mar. Geol., 252, 120–128. Kastens, K.A., Mascle, J., Auroux, C.A., Bonatti, E., Broglia, C., Channell, J., Curzi, P., Emeis, K.C., Glacon, G., Hasegawa, S., Hieke, W., Mascle, G., McCoy, F., McKenzie, J., Mendelson, J., Mueller, C., Rehault, J., Robertson, A., Sartori, R., Sprovieri, R. and Torii, M., 1988. ODP Leg 107 in the Tyrrhenian Sea: Insights into passive margins and back-arc basin evolution. Geol. Soc. Am. Bull., 100, 1140–1156. Kastens, K.A., Mascle, J., Auroux, C.A., Bonatti, E., Broglia, C., Channell, J., Curzi, P., Emeis, K.C., Glacon, G., Hasegawa, S., Hieke, W., Mascle, G., McCoy, F., McKenzie, J., Mendelson, J., Mueller, C., Rehault, J., Robertson, A., Sartori, R., Sprovieri, R. and Torii, M., 1990. Proceedings of the Ocean Drilling Program, Scientific Results Volume 107. College Station, Texas, 722pp. Larter, R.D., Vanneste, L.E., Morris, P. and Smythe, D.K., 2003. Structure and tectonic evolution of the South Sandwich arc. In: Intra-Oceanic Subduction Systems: Tectonic and Magmatic Processes (R.D. Larter and P.T. Leat, eds). Geol. Soc. Lond. Spec. Publ., 219, 255–284. Ligi, M., Bonatti, E., Bortoluzzi, G., Carrara, G., Fabretti, P., Gilod, D., Peyes, A.A., Skolotnev, S. and Turko, N., 1999. Bouvet triple junction in the South Atlantic: Geology and evolution. J. Geophys. Res., 102, 29365–29385. Malinverno, A. and Ryan, W.B.F., 1986. Extension in the Tyrrhenian Sea and shortening in the Apennines as a result of arc migration driven by sinking of lithosphere. Tectonics, 5, 227–245. Marani, M.P. and Trua, T., 2002. Thermal constriction and slab tearing at the origin of a superinflated spreading ridge: Marsili volcano (Tyrrhenian Sea). J. Geophys. Res., 107 (B9), 2188. doi:10.1029/2001JB000285. Marani, M.P., Gamberi, F., Binns, R.A. and Parr, J.M., 1999. Results from recent seabed sampling of hydrothermal deposits in the 0073outh Tyrrhenian Sea. In: Mineral Deposits: Processes to Processing (C.J. Stanley et al., eds), pp. 547– 550. A.A. Balkema Publishers, Rotterdam. Marani, M.P., Gamberi, F. and Bonatti, E., 2004. From seafloor to deep mantle: architecture of the Tyrrhenian backarc basin. Mem. Descr. Carta Geol. d It., 44, 195. Mattei, M., Petrocelli, V., Lacava, D. and Sciattarella, M., 2004. Geodynamic implications of Pleistocene ultra-rapid vertical-axis rotations in the Southern Apennines, Italy. Geology, 32, 789–792. Nicolosi, I., Speranza, F. and Chiappini, M., 2006. Ultrafast oceanic spreading of the Marsili Basin, southern Tyrrhenian Sea: Evidence from magnetic anomaly analysis. Geology, 34, 717–720. Paltrinieri, D., Viezzoli, C., Signanini, P., Di Sabatino, B., D Anna, G., Calcara, M., Bortoluzzi, G., Cocchi, L. and Caratori Tontini, F., 2006. Report on the morphobathymetric, magnetometric, gravimetric, CTD, water and bottom sampling investigations during cruise MRS06 aboard R⁄ v Universitatis, ISMAR-CNR Interim Report, Bologna. Patacca, E., Sartori, R. and Scandone, P., 1990. Tyrrhenian Basin and Apenninic arcs: kinematic relations since Late Tortonian times. Memorie della Societa` Geologica Italiana, 46, 425–451. Rosenbaum, G. and Lister, G.S., 2004. Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics, 23, TC1013. doi:10.1029/2003TC001518. Rosenbaum, G., Gasparon, M., Lucente, F.P., Peccerillo, A. and Miller, M.S., 2008. Kinematics of slab tear faults during subduction segmentation and implication for Italian magmatism. Tectonics, 27, TC2008. doi:10.1029/ 2007TC002143. Royden, L., 1988. Flexural behavior of the Continental Lithosphere in Italy Constraints imposed by gravity and deflection data. J. Geophys. Res., 93, 7747–7766. Sartori, R., Torelli, L., Zitellini, N., Carrara, G., Magaldi, M. and Mussoni, P., 2004. Crustal features along a W–E Tyrrhenian transect from Sardinia to Campanian margins (Central Mediterranean). Tectonophysics, 383, 171–192. Scarascia, A., Lozej, A. and Cassinis, R., 1994. Crustal structures of the Ligurian Tyrrhenian and Ionian seas and adjacent onshore areas interpreted from wideangle seismic profile. Bollettino di Geofisica Teorica e Applicata, 36, 4–19. Selli, R., Lucchini, F., Rossi, P., Savelli, C. and Del Monte, M., 1977. Dati geologici, petrochimici, e radiometrici sui vulcani centro-tirrenici. Giorn. Geol., 2, 221–246. Thomas, C., Livermore, R. and Pollitz, E., 2003. Motion of the Scotia Sea plates. Geophysical Journal International, 155, 789–804. Tivey, M.A., Rona, P.A. and Schouten, H., 1993. Reduced crustal magnetization beneath the active sulfide mound, TAG hydrothermal field, Mid-Atlantic Ridge. Earth Planet. Sci. Lett., 115, 101–115. Tivey, M., Rona, P.A. and Kleinrock, M.C., 1996. Reduced crustal magnetization beneath hydrothermal mounds: TAG hydrothermal field, Mid-Atlantic Ridge, 26 N. Geophys. Res. Lett., 23, 3511–3514. Trua, T., Serri, G., Marani, M., Renzulli, A. and Gamberi, F., 2002. Volcanological and petrological evolution of Marsili Seamount (southern Tyrrhenian Sea). J. Volcanol. Geoth. Res., 114, 441–464. Trua, T., Serri, G. and Marani, M.P., 2003. Lateral Flow of African mantle below the nearby Tyrrhenian Plate: geochemical evidence. Terra Nova, 15, 433–440. Wessel, P. and Smith, W.H.F., 1998. New, improved version of the generic mapping tools released: EOS. Trans. Am. Geophys. Union, 79, 579.en
dc.description.obiettivoSpecifico2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCocchi, L.en
dc.contributor.authorCaratori Tontini, F.en
dc.contributor.authorMuccini, F.en
dc.contributor.authorMarani, M. P.en
dc.contributor.authorBortoluzzi, G.en
dc.contributor.authorCarmisciano, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentISMAR-CNR, Sezione di Geologia Marina, Via Gobetti 101, 40129 Bologna, Italyen
dc.contributor.departmentISMAR-CNR, Sezione di Geologia Marina, Via Gobetti 101, 40129 Bologna, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto di Geologia Marina, CNR, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-7835-1116-
crisitem.author.orcid0000-0001-5316-9043-
crisitem.author.orcid0000-0001-7357-2147-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
ter_891-cocchi.pdfmain article2.99 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

31
checked on Feb 10, 2021

Page view(s) 20

337
checked on Mar 27, 2024

Download(s)

54
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric