Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5135
DC FieldValueLanguage
dc.contributor.authorallJolivet, L.; ISTO, UMR 6113, Université d'Orléans 1A, Rue de la Férollerie, 45071 Orléans Cedex 2, Franceen
dc.contributor.authorallFaccenna, C.; Dipartimento di Scienze Geologiche, University of Roma Tre, Largo San Murialdo 1, 00146 Rome, Italyen
dc.contributor.authorallPiromallo, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2009-07-28T06:02:48Zen
dc.date.available2009-07-28T06:02:48Zen
dc.date.issued2009-07-09en
dc.identifier.urihttp://hdl.handle.net/2122/5135en
dc.description.abstractThe origin of forces driving the deformation of the continental crust near subduction zones and especially in backarc regions is debated. Thiswork is based on a compilation of SKS fast splitting directions that give an image of flowlines in themantle around theMediterranean subduction zones and a comparisonwith stretching and shear directions in metamorphic core complexes that show the pattern of deformation at the scale of the middle and lower crusts.We find that : (1) the two sets of directions are parallel in the three main backarc regions, namely the Alboran Sea, the Tyrrhenian Sea and the Aegean Sea showing that the lithosphere deformswith the samedirection of stretching in the crust and themantle, suggesting that (2) crustal deformation ismainly driven frombelowby slab retreat, and (3) the lithospheric fabric is reset within a few millions of years in backarc environments.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/285 (2009)en
dc.subjectsubductionen
dc.subjectseismic anisotropyen
dc.subjectbackarc extensionen
dc.subjectslab retreaten
dc.subjectstretching lineationen
dc.subjectmetamorphic core complexesen
dc.subjectMediterraneanen
dc.subjectAegeanen
dc.subjectTyrrhenianen
dc.subjectAlboranen
dc.titleFrom mantle to crust: Stretching the Mediterraneanen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber198–209en
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamicsen
dc.identifier.doi10.1016/j.epsl.2009.06.017en
dc.relation.referencesArmijo, R., Meyer, B., King, G.C.P., Rigo, A., Papanastassiou, D., 1996. Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophys. J. Int. 126, 11–53. Augier, R., Jolivet, L., Robin, C., 2005. Late orogenic doming in the eastern Betics: final exhumation of the Nevado–Filabride complex and its relation to basin genesis. Tectonics 24, TC4003. doi:10.1029/2004TC001687. Baccheschi, P., Margheriti, L., Steckler, M.S., 2007. Seismic anisotropy reveals focused mantle flow around the Calabrian slab (Southern Italy). Geophys. Res. Lett. 34, L05302. doi:10.1029/2006GL028899. Bank, C.G., Bostok, M.G., Ellis, R.M., Cassidy, J.F., 2000. A reconnaissance teleseismic study of the upper mantle and transition zone beneath the Archean Slave craton in NW Canada. Tectonophysics 319, 151–166. Barruol, G., Deschamps, A., Coutant, O., 2004. Mapping upper mantle anisotropy beneath SE France by SKS splitting: evidence for a Neogene asthenospheric flow induced by the Apulian slab rollback and deflected by the deep Alpine roots. Tectonophysics 394, 125–138. Barruol, G., Granet, M., 2002. A tertiary asthenospheric flow beneath the southern French Massif Central related to the west Mediterranean extension evidenced by upper mantle seismic anisotropy. Earth Planet. Sci. Lett. 202, 31–47. Barruol, G., Souriau, A., 1995. Anisotropy beneath the Pyrenees range from teleseismic shear wave splitting. Geophys. Res. Lett 22, 493–496. Barruol, G., et al., 1998. Lithospheric anisotropy beneath the Pyrenees from shear wave splitting. J. Geophys. Res. 103, 30039–30054. Becker, T.W., 2008. Azimuthal seismic anisotropy constrains net rotation of the lithosphere. Geophys. Res. Lett. 35, L05303. doi:10.1029/2007GL032928 (Correction: 2008GL033946). Becker, T.W., Schulte-Pelkum, V., Blackman, D.K., Kellog, J.B., O'Connell, R.J., 2006. Mantle flow under the western United States from shear wave splitting, Earth Planet. Sci. lett. 247, 235–251. Behn, M.D., Conrad, C.P., Silver, P.G., 2004. Detection of upper mantle flow associated with the African Superplume. Earth and Planet. Sci. Lett. 224, 259–274. Bijwaard, H., Spakman, W., Engdahl, E.R., 1998. Closing the gap between global and regional mantle tomography. J. Geophys. Res. 103, 30055–30078. Buick, I.S., Holland, T.J.B., 1989. The P–T–t path associated with crustal extension, Naxos, Cyclades, Greece. In: Daly, J.S. (Ed.), Evolution of metamorphic belts: Geol. Soc. Spec. Pub. pp. 365–369. Bokelmann, G.H.R., 2002a. Convection-driven motion of the North American craton: evidence from P-wave anisotropy. Geophys. J. Int. 148, 278–287. Bokelmann, G.H.R., 2002b. Which forces drive North America? Geology 30, 1027–1030. Buontempo, L., Bokelmann, G.H.R., Barruol, G., Morales, J., 2008. Seismic anisotropy beneath southern Iberia from SKS splitting. Earth Planet. Sci. Let. 273, 237–250. doi:10.1016/j.epsl.2008.06.024. Buttles, J., Olson, P., 1998. A laboratory model of subduction zone anisotropy. Earth Planet. Sci. Lett. 164, 245–262. Carminati, E., Wortel, M.J.R., Spakman, W., Sabadini, R., 1998. The role of slab detachment processes in the opening of the western-central Mediterranean basins: some geological and geophysical evidence. Earth Planet. Sci. Lett. 160, 651–665. Choukroune, P., et al.,1986.Deformation andmotion in theWestern Alpine arc. Tectonics 5, 215–226. Cifelli, F., Mattei, M., Rossetti, F., 2007. Tectonic evolution of arcuate mountain belts on top of a retreating subduction slab: the example of the Calabrian Arc. J. Geoph. Res. 112 (B09101). doi:10.1029/2006JB004848. Civello, S., Margheriti, L., 2004. Toroidal mantle flow around the Calabrian slab (Italy) from SKS splitting. Geophysical Res. Lett. 31 (L10601). doi:10.1029/2004GL019607. Coney, P.J., Harms, T.A., 1984. Cordilleran metamorphic core complexes, Cenozoic extensional relics of Mesozoic compression. Geology 12, 550–554. Crespo Blanc, A., Orozco, M., Garcia-Duenas, V., 1994. Extension versus compression during the Miocene tectonic evolution of the Betic chain. Late folding of normal fault system. Tectonics 13, 78–88. de Boorder, H., Spakman, W., White, S.H., Wortel, M.J.R., 1998. Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt. Earth Planet. Sci. Lett. 164, 569–575. Díaz, J., et al., 2006. Probing seismic anisotropy in north Iberia from shearwave splitting. Phys. Earth Planet Int. 158 (2–4), 210–225. Duchêne, S., Aïssa, R., Vanderhaeghe, O., 2006. Pressure–temperature-time evolution of metamorphic rocks from Naxos (Cyclades, Greece): constraints from thermobarometry and Rb/Sr dating. Geodynamica Acta 19 (5), 299–319. Faccenda,M., Burlini, L., Geryal, T.V.,Mainprice, D., 2008. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature 455, 1097–1100. doi:10.1038/ nature07376. Faccenna, C., Funiciello, F., Giardini, D., Lucente, P., 2001. Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth Planet. Sci. Lett. 187, 105–116. Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L., Rossetti, F., 2004. Lateral slab deformation and the origin of the Western Mediterranean arcs. Tectonics 23. doi:10.1029/2002TC001488. Faccenna, C., Speranza, F., D'Ajello Caracciolo, F., Mattei, M., Oggiano, G., 2002. Extensional tectonics on Sardinia (Italy): insights into the arc–back-arc transitional regime. Tectonophysics 356, 213–232. Fellin, M.G., Picotti, V., Zattin, M., 2005. Neogene to Quaternary rifting and inversion in Corsica: retreat and collision in the western Mediterranean. Tectonics 24, 2198. doi:10.1029/2000JB000093. Flesch, L.M., et al., 2005. Constraining the extent of crust–mantle coupling in central Asia using GPS, geologic, and shear wave splitting data Earth and Planet. Sci. Lett. 238, 248–268. Funiciello, F., et al., 2006. Mapping mantle flow during retreating subduction: laboratory models analyzed by feature tracking. J. Geophys. Res. 111, B03402. doi:10.1029/2005JB003792. Gautier, P., Brun, J.P.,1994a. Crustal-scale geometry and kinematics of late-orogenic extension in the central Aegean (Cyclades and Evvia island). Tectonophysics 238, 399–424. Gautier, P., Brun, J.P., 1994b. Ductile crust exhumation and extensional detachments in the central Aegean (Cyclades and Evvia islands). Geodinamica Acta 7 (2), 57–85. Goetze, C., Evans, B., 1979. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys. J. R. Astron. Soc. 59, 463–478. Granet, M., Glahn, A., Achauer, U., 1998. Anisotropic measurements in the Rhinegraben area and the French Massif Central: geodynamic implications. Pure Appl. Geophys. 151, 333–364. Grasemann, B., Petrakakis, K., 2007. Evolution of the Serifos Metamorphic Core Complex. In: Lister, G., Foster, M. (Eds.), Inside the Aegean Core Complexes: Journal of the Virtual Explorer. Electronic Edition. Hatzfeld, D, et al., 2001. Shear wave anisotropy in the upper mantle beneath the Aegean related to internal deformation. J. Geophys. Res. 106 (B12), 30737–30754. Healy, D., Reddy, S.M., Timms, N.E., Gray, E.M., Brovarone, A.V., 2009. Trench-parallel fast axes of seismic anisotropy due to fluid-filled cracks in subducting slabs Earth Planet. Sci. Lett. doi:10.1016/j.epsl.2009.03.037. Huet, B., Labrousse, L. and Jolivet, L., 2009. Thrust or detachment? Exhumation processes in the Aegean: insight from a field study on Ios (Cyclades, Greece). Tectonics accepted with minor modifications. Jackson, J., 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich? GSA Today 4–10 September 2002. Jolivet, L., et al., 2008. Subduction, convergence and the mode of backarc extension in the Mediterranean region. Bull. Soc. Géol. France 179 (6), 525–550. Jolivet, L., Faccenna, C., Goffé, B., Burov, E., Agard, P., 2003. Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. Am. J. Sci. 303, 353–409. Karato, S., Jung, H., Katayama, I., Skemer, P.A., 2008. Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Ann. Rev. Earth Planet. Sci. 36, 59–95. Kincaid, C., Griffiths, R.W., 2003. Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature 425, 58–62. Kissel, C., Laj, C., 1988. The Tertiary geodynamic evolution of the Aegean arc: a paleomagnetic reconstruction. Tectonophysics 146, 183–201. Kreemer, C., Chamot-Rooke, N., Le Pichon, X., 2004. Constraints on the evolution and vertical coherency of deformation in the Northern Aegean from a comparison of geodetic, geologic and seismologic data. Earth Planet. Sci. Lett. 225, 329–346. Lister, G.S., Banga, G., Feenstra, A., 1984. Metamorphic core complexes of cordilleran type in the Cyclades, Aegean Sea, Greece. Geology 12, 221–225. Little, T.A., Savage, M.K., Tikoff, B., 2002. Relationship between crustal finite strain and seismic anisotropy in the mantle, Pacific–Australia plate boundary zone, South Island, New Zealand. Geophys. J. Int. 151, 106–116. Long, M.D., Silver, P.G., 2008. The subduction zone flow field from seismic anisotropy: a global view. Science 319, 315–318. Lucente, F.P.,Margheriti, L., 2008. Subduction rollback, slab breakoff, and induced strain in the uppermost mantle beneath Italy. Geology 36 (5), 375–378. doi:10.1130/G24529A.1. Lucente, F.P., Margheriti, L., Piromallo, C., Barruol, G., 2006. Seismic anisotropy reveals the long route of the slab through the western-central Mediterranean mantle. Earth Planet. Sci. Lett. 241, 517–529. Malinverno, A., Ryan, W., 1986. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5, 227–245. Margheriti, L., Lucente, F.P., Pondrelli, S., 2003. SKS splitting measurements in the Apenninic–Tyrrhenian domain (Italy) and their relationwith lithospheric subduction and mantle convection. J. Geophys. Res. 108 (B4), 2218. doi:10.1029/2002JB001793. Marone, F., Romanowicz, B., 2007. The depth distribution of azimuthal anisotropy in the continental upper mantle. Nature 447 (198–201). Martinez-Martinez, J.M., Azañon, J.M., 1997. Mode of extensional tectonics in the southeastern Betics (SE Spain): implications for the tectonic evolution of the peri- Alboran orogenic system. Tectonics 16 (2), 205–225. Mattei, M., et al., 2002. The Miocene tectonic evolution of the Southern Tyrrhenian Sea: stratigraphy, structural and paleomagnetic data from the on-shore Amantea basin (Calabrian Arc, Italy). Basin Res. 14, 147–168. McKenzie, D.P., Jackson, J.A., 1986. A block model of distributed deformation by faulting. J. Geol. Soc. London 143, 349–353. Mehl, C., Jolivet, L., Lacombe, O., Labrousse, L., Rimmelé, G., 2007. Structural evolution of Andros Island(Cyclades, Greece): a key to the behaviour of a flat detachmentwithin an extending continental crust. In: Taymaz, T.,Dilek, Y., Ylmaz, Y. (Eds.), The geodynamics of the Aegean and Anatolia. doi:10.1144/SP291.3 0305-8719/07/$15.00. Meissner, R., Mooney,W.D., Artemieva, I., 2002. Seismic anisotropy and mantle creep in young orogens. Geophys. J. Int. 149, 1–14. Mercier, J.L., Sorel, D., Simeakis, K., 1987. Change in the state of stress in the overriding plate of a subduction zone: the Aegean arc from the Pliocene to the Present. Annales Tectonicae 1 (1), 20–39. Molnar, P., 1992. Brace-Goetze strength profiles, the partitionning of strike–slip and thrust faulting at zones of oblique convergence, and the stress–heat flow paradox of the San Andreas Fault, fault mechanics and transport properties of rocks. Academic Press Ltd, pp. 435–459. Molnar, P., Lyon-Caen, H., 1988. Some simple physical aspects of the support, structure, and evolution of mountain belts. Geol. Soc. Amer. Spec. Pap. 218, 179–207. Moore, M., England, P., Parsons, B., 2002. Relation between surface velocity field and shear wave splitting in the South Island of New Zealand. J. Geophys. Res. 107 (B9), 2198 10.1029/2000JB000093. Morris, A., Anderson, A., 1996. First paleaomagnetic results from the Cycladic Massif, Greece, and their implications for Miocene extension directions and tectonic models in the Aegean. Earth Planet. Sci. Lett. 142, 397–408. Negro, F., Agard, P., Goffé, B., Saddiqi, O., 2007. Tectonic and metamorphic evolution of the Temsamane units, External Rif (northern Morocco): implications for the evolution of the Rif and Betic-Rif arc. J. Geol. Soc. London 164, 829–842. Oldow, J.S., Bally, A.W., Avé Lallemant, H.G., 1990. Transpression, orogenic float, and lithospheric balance. Geology 18, 991–994. Piromallo, C., Becker, T.W., Funiciello, F., Faccenna, C., 2006. Three-dimensional instantaneous mantle flow induced by subduction. J. Geophys. Res. 33, L08304. doi:10.1029/2005GL025390. Piromallo, C., Morelli, A., 2003. P wave tomography of the mantle under the Alpine– Mediterranean area. J. Geophys. Res. 108 (B2), 2065 10.129/2002JB001757. Platt, J.P., Vissers, R.L.M., 1989. Extensional collapse of thickened continental lithosphere: a working hypothesis for the Alboran Sea and Gibraltar arc. Geology 17, 540–543. Plomerová, J., et al., 2006. Seismic anisotropy beneath the Northern Apennines (Italy): mantle flow or lithosphere fabric? Earth Planet. Sci. Lett. 247, 157–170. Rosenbaum, G., Lister, G.S., Duboz, C., 2002. Reconstruction of the tectonic evolution of the Western Mediterranean since the Oligocene. In: Rosenbaum, G., Lister, G.S. (Eds.), Reconstruction of the evolution of the Alpine–Himalayan orogen: Journal of the Virtual Explorer, pp. 107–126. Rossetti, F., Goffé, B., Monié, P., Faccenna, C., Vignaroli, G., 2004. Alpine orogenic P– T–t-deformation history of the Catena Costiera area and surrounding regions (Calabrian Arc, southern Italy): the nappe edifice of north Calabria revised with insights on the Tyrrhenian–Apennine system formation. Tectonics 23 (TC6011). doi:10.1029/2003TC001560. Royden, L.H., 1993. Evolution of retreating subduction boundaries formed during continental collision. Tectonics 12 (3), 629–638. Salimbeni, S., et al., 2007. Abrupt change inmantle fabric across northern Apennines detected using seismic anisotropy. Geophys. Res. Lett. 34, L07308. doi:10.1029/2007GL029302. Sandvol, E., et al., 2003. Shear wave splitting in a young continent–continent collision: an example from eastern Turkey. Geophys. Res. Lett. 30 (24), 8041. doi:10.1029/ 2003GL017390. Savage, M.K., 1999. Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting? Rev. Geophys. 37 (1), 65–106. Savage, M.K., Sheehan, A.F., 2000. Seismic anisotropy and mantle flow from the Great basin to the Great Plains, western United States. J. Geoph. Res. 105, 13715–13734. Schermer, E.R., 1993. Geometry and kinematics of continental basement deformation during the Alpine orogeny, Mt. Olympos region, Greece. J. Struct. Geol. 15 (3–5), 571–591. Schmid, C., van der Lee, S., Giardini, D., 2004. Delay times and shearwave splitting in the Mediterranean region. Geophys. J. Int. 159, 275–290. Silver, P., 1996. Seismic anisotropy beneath the continents: probing the depth of geology. Annu. Rev. Earth Planet. Sci. 24, 385–432. Silver, P.G., Holt, W.E., 2002. The mantle flow field beneath western North America. Science 295, 1054–1057. Spakman, W., Wortel, R., 2004. A tomographic view on Western Mediterranean geodynamics. In: Cavazza,W., Roure, F.M., Spakman,W., Stampfli, G.M., Ziegler, P.A. (Eds.), The TRANSMED Atlas — the Mediterranean region from crust to mantle. Springer, Berlin, Heidelberg, pp. 31–52. Tikoff, B., Russo, R., Teyssier, C., Tommasi, A., 2004. Mantle-driven deformation of orogenic zone and clutch tectonics. In: Grocott, J., McCaffrey, K.J.W., Taylor, G., Tikoff, B. (Eds.), Vertical coupling and decoupling in the lithosphere. Geological Society, London, pp. 41–64. Special Publications. van Hinsbergen, D.J.J., Langereis, C.G., Meulenkamp, J.E., 2005. Revision of the timing, magnitude and distribution of Neogene rotations in the western Aegean region. Tectonophysics 396 (1–2), 1–34. van Keken, P.E., Kneller, E.A., 2007. Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems. Nature 450, 1222–1225. doi:10.1038/ nature06429. Vanderhaeghe, O., 2004. Structural development of the Naxos migmatite dome. In: Whitney, D.L., Teyssier, C., Siddoway, C.S. (Eds.), Gneiss domes in orogeny. InGeological Society of America, Boulder, Colorado, pp. 211–227. Vauchez, A., Tommasi, A., Barruol, G., 1998. Rheological heterogeneity, mechanical anisotropy and deformation of the continental lithosphere. Tectonophysics 296, 61–86. Vignaroli, G., Faccenna, C., Jolivet, L., Piromallo, C., Rossetti, F., 2008. Orogen-parallel extension and arc bending forced by slab tearing and toroidal flow at the junction between Alps and Apennines. Tectonophysics 450 (1–4), 34–50. doi:10.1016/j. tecto.2007.12.012. Watts, A.B., Burov, E.B., 2003. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Tectonophysics 213, 113–131. Wernicke, B., 1992. Cenozoic extensional tectonics of the U.S. cordillera. In: Burchfiel, B.C., Lipman, P.W., Zoback, M.L. (Eds.), The Cordilleran Orogen: conterminous U.S.Geological Society of America, Boulder, Colorado, pp. 553–581. Wessel, P., Smith, W.H.F., 1998. New, improved version of generic mapping tools released, Eos Trans. AGU 79 (47), 579. Wortel, M.J.R., Spakman, W., 2000. Subduction and slab detachment in the Mediterranean–Carpathian region. Science 290, 1910–1917. Zhang, S., Karato, S., 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature 375, 774–777.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorJolivet, L.en
dc.contributor.authorFaccenna, C.en
dc.contributor.authorPiromallo, C.en
dc.contributor.departmentISTO, UMR 6113, Université d'Orléans 1A, Rue de la Férollerie, 45071 Orléans Cedex 2, Franceen
dc.contributor.departmentDipartimento di Scienze Geologiche, University of Roma Tre, Largo San Murialdo 1, 00146 Rome, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartement de geologie, Ecole Normale Superieure, Paris, France-
crisitem.author.deptUniversità Roma Tre-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-2596-2017-
crisitem.author.orcid0000-0003-3478-5128-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Jolivet_etal_EPSL2009.pdfMain article3.59 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 10

146
checked on Feb 10, 2021

Page view(s) 50

336
checked on Apr 17, 2024

Download(s)

43
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric