Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Misiti, V.*
Vetere, F.*
Mangiacapra, A.*
Behrens, H.*
Cavallo, A.*
Scarlato, P.*
Dingwell, D. B.*
Title: Viscosity of high-K basalt from the 5th April 2003 Stromboli paroxysmal explosion
Title of journal: Chemical Geology
Series/Report no.: /260 (2009)
Publisher: elsevier
Issue Date: 2009
DOI: 10.1016/j.chemgeo.2008.12.023
Keywords: viscosity
Falling sphere
Silicate melt
Abstract: The 5th April 2003 paroxysmal event was the strongest explosion that has occurred at Stromboli in the last 50 years. This event lasted only few minutes and was characterised by two violent explosions, followed by gas and pyroclast emission. In order to constrain models of the dynamics of the paroxystic event the viscosity of anhydrous and hydrous Stromboli high potassium (HK)-basaltic melts have been measured. Viscosity has been investigated in the low viscosity range with the falling sphere method at superliquidus temperatures (1423 to 1673 K) and 0.5 GPa and in the high viscosity range with micropenetration near the glass transition temperature (723 to 1035 K) at atmospheric pressure. Falling sphere experiments were performed in a piston cylinder apparatus with melts whose water content varies from nominally anhydrous (0.02 wt.% H2O) to 4.16 wt.% H2O. The combination of high- and low-viscosity data permits a general description of the viscosity as a function of temperature and water contentusing a modified Tamman–Vogel–Fulcher equation. Using these new viscosity data, an estimation of the flow regime and magma velocity is performed. Our data suggest that the ascent of magma from the 7–8 km deep reservoir to a shallower reservoir located at about 3 km of depth, may occur within minutes. Moreover, we infer a turbulent flow regime. Finally, our estimates of the ascent velocity agree qualitatively with results from petrological studies (e.g. [Bertagnini, A., Métrich, N., Landi, P., Rosi, M., 2003. Stromboli volcano (Aeolian Archipelago, Italy): an openwindowon the deep-feeding system of a steady state basaltic volcano. Journal of Geophysical Research 108, 2336–2350.]), which indicate a turbulent flow regime and rapid ascent velocities such to inhibit volatile-loss-induced crystallization.We conclude that hazard evaluation at Stromboli Island should incorporate the likelihood of very rapid ascent of less-evolved melts from depth.
Appears in Collections:04.01.05. Rheology
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
ChemicalGeology2009.pdf831.15 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA