Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5105

Authors: Bartolotta, V.*
Bellomo, S.*
Brusca, L.*
Corrao, M.*
Inguaggiato, S.*
Title: Geochemical insights on minor and trace elements in groundwater of Mount Etna
Issue Date: 14-Sep-2009
Keywords: Trace Elements
Etna
ground-waters
Abstract: Mt. Etna ground water has a high content of dissolved CO2 influencing the processes of iso-chemical dissolution of the host – rock. This ground water shows, low pH, low temperature reaction and a short residence time in the aquifer. The low variability in the concentration of ions and dissolved complexes is due to high permeability of the host-rocks, mainly Hawaiti as well as short travel time and low water-rock interaction. All ground water is bicarbonate alkaline-earth, with bicarbonate amount ranging from 5 to 25 meq/l. The pH ranges between 5,9 and 7,7, and the temperatures between 9,5 and 20 degrees centigrade. The isotopic composition values (∂18O, ∂D) show an evident meteoric origin. Trace and minor elements can give an important contribute to interpret the geochemical processes. In ground water, there is a huge variety of trace elements from different sources. Many elements are carried in groundwater by water-rock interaction processes, others by anthropogenic pollution and also, like gases, by high-temperature deep fluids. In B-Cl diagram the theoretical values of B and Cl concentrations of Basalt hosted water (BHW) and Sediment hosted water (SHW) have been reported together with the concentration values of rocks (Tholeiti, Basalt, Alkali-basalt). Preliminary results indicate that Boron, in Etnean ground water, derives from water/basaltic-rock and water/sedimentary-rock interaction processes. The amount of Boron in ground water of Mount Etna ranges from 31 ppb to 4217 ppb. The ground water’s trace elements, shared in three main sectors of Etna areas, have been compared to remark existent correlation among waters, the influence of dilution processes and the water-host rock interaction.
Appears in Collections:Conference materials
04.08.07. Instruments and techniques
05.02.01. Geochemical data

Files in This Item:

File SizeFormatVisibility
Bartolotta_icgg10.doc27 kBMicrosoft WordView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA