Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/508
DC FieldValueLanguage
dc.contributor.authorallCaracausi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallDitta, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallItaliano, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallLongo, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallNuccio, P. M.; Dipartimento Chimica e Fisica della Terra ed Applicazioni, Via Archirafi 36, 90123 Palermo, Italyen
dc.contributor.authorallPaonita, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallRizzo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2005-10-31T13:19:31Zen
dc.date.available2005-10-31T13:19:31Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/508en
dc.description.abstractHydrothermal systems and related vents can exhibit dramatic changes in their physico-chemical conditions over time as a response to varying activity in the feeding magmatic systems. Massive steam condensation and gas scrubbing processes of thermal fluids during their ascent and cooling cause further compositional changes that mask information regarding the conditions evolving at depth in the hydrothermal system. Here we propose a new stability diagram based on the CO2-CH4-CO-H2 concentrations in vapor, which aims at calculating the temperatures and pressures in hydrothermal reservoirs. To filter gas scrubbing effects, we have also developed a model for selective dissolution of CO2-H2S-N2-CH4-He-Ne mixtures in fresh and/or air-saturated seawater. This methodology has been applied to the recent (November 2002) crisis that affected the geothermal field off the island of Panarea (Italy), where the fluid composition and fluxes have been monitored for the past two decades. The chemical and isotopic compositions of the gases suggest that the volatile elements originate from an active magma, which feeds a boiling saline solution having temperatures of up to 350 C and containing 12 mol CO2 in vapor. The thermal fluids undergo cooling and re-equilibration processes on account of gas-water-rock interactions during their ascent along fracture networks. Furthermore, steam condensation and removal of acidic species, partial dissolution in cold air-saturated seawater and stripping of atmospheric components, affect the composition of the geothermal gases at shallow levels. The observed geochemical variations are consistent with a new input of magmatic fluids that perturbed the geothermal system and caused the unrest event. The present-state evolution shows that this dramatic input of fluids is probably over, and that the system is now tending towards steady-state conditions on a time scale of months.en
dc.format.extent539 bytesen
dc.format.extent627284 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofGeochimica et Cosmochimica Actaen
dc.relation.ispartofseries12/69(2005)en
dc.subjectSubmarine degassingen
dc.subjectgeothermal systemen
dc.subjectgas-water interactionen
dc.subjectgas geothermometryen
dc.titleChanges in fluid geochemistry and physico-chemical conditions of geothermal systems caused by magmatic input: The recent abrupt outgassing off the island of Panarea (Aeolian Islands, Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber3045-3059en
dc.identifier.URLhttp://www.sciencedirect.com/en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamicsen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.01. Geochemical dataen
dc.identifier.doi10.1016/j.gca.2005.02.011en
dc.relation.referencesBaker E. T. (1995) Characteristics of hydrothermal discharge following a magmatic intrusion. In Hydrothermal vents and processes (eds.Pearson and others), 87, pp. 65–76. Geological Society, London,Special Publications. Baker E. T., Urabe T. (1996) Extensive distribution of hydrothermal plumes along the superfast spreading East Pacific Rise, 13°30=– 18°40=S. Oceanogr. Lit. Rev. 43, 1113. Baker E. T., Massoth G. J., Feely R. A., Cannon G. A., Thomson R. E. (1998) The rise and fall of the CoAxial hydrothermal site, 1993–1996. J. Geophys. Res. 103, 9791–9806. Baker E. T., Lowell R. P., Resing J. A., Feely R. A., Embley R. W.,Massoth G. J., Walzer S. L. (2004)Decay of hydrothermal output following the 1998 seafloor eruption at Axial Volcano: Observation and models. J. Geophys. Res. 109, B01205. Bonasia V., Luongo A. and Montagna G. (1973) A land gravity survey of the Aeolian islands. Bull. Volcanol. 37, 134–146. Bukumirovic T., Italiano F., Nuccio P. M. (1997) The evolution of a dynamic geological system: the support of a GIS for geochemical measurements at the fumarole field of Vulcano, Italy. J. Volcanol. Geotherm. Res. 79, 253–263. Butterfield D. A., Massoth G. J. (1994) Geochemistry of north Cleft segment vent fluids: Temporal changes in chlorinity and their possible relation to vent volcanism. J. Geophys. Res. 99, 4951–4968. Calanchi N., Capaccioni B., Martini M., Tassi F. and Valentini L. (1995) Submarine gas-emission from Panarea Island (Aeolian Arcipelago): distribution of inorganic and organic compounds and inferences about source conditions. Acta Vulcanol. 7, 43–48. Calanchi N., Peccerillo A., Tranne C. A., Lucchini F., Rossi P. L., Kempton P., Barbieri M. and Wu T. W. (2002) Petrology and geochemistry of volcanic rocks from the island of Panarea: implications for mantle evolution beneath the Aeolian island arc (southern Tyrrhenian sea). J. Volcanol. Geotherm. Res. 115, 367–395. Caliro S., Caracausi A., Chiodini G., Ditta M., Italiano F., Longo M., Minopoli C., Nuccio P. M., Paonita A. and Rizzo A. (2004)Evidence of a new magmatic input to the quiescent volcanic edifice of Panarea, Aeolian Islands, Italy. Geophys. Res. Lett. 31, 1–5. Capasso G., Favara R., Inguaggiato S. (1997) Chem. features and isotopic gaseous manifestation on Vulcano Island (Aeolian Island): an interpretative model of fluid circulation. Geochim. Cosmochim. Acta 61, 3425–3442. Caracausi A., Italiano F., Nuccio P. M., Paonita A. and Rizzo A. (2003)Evidence of deep magma degassing and ascent by geochemistry of peripheral gas emissions at Mt. Etna (Italy): assessment of the magmatic reservoir pressure. J. Geophys. Res. 108, 2463–2484. Chiodini G. and Marini L. (1998) Hydrothermal gas equilibria: the H2O-H2-CO2-CO-CH4 system. Geochim. Cosmochim. Acta 62,2673–2687. Chiodini G., Todesco M., Caliro S., Del Gaudio C., Macedonio G. and Russo M. (2003) Magma degassing as a trigger of bradyseismic events: The case of Phlegrean Fields (Italy). Geophys. Res. Lett. 30–8, 1434. Christenson B. W. (2000) Geochemistry of fluids associated with the 1995–1996 eruption of Mt. Ruapehu, New Zealand: signatures and processes in the magmatic-hydrothermal system. J Volcanol. Geotherm. Res. 97, 1–30. Davies P. C. W. (1977) Thermodynamics and cosmology. In The Physics of Time Asymmetry (ed. P. C. W. Davis), pp. 23–44. University of California Press, Berkley, CA. Delmelle P., Bernard A., Kusakabe M., Fischer T. P., Takano B. (2000)Geochemistry of the magmatic-hydrothermal system of Kawah Ijen volcano, East Java, Indonesia. J. Volcanol. Geotherm. Res. 97, 31–53. Di Liberto V., Nuccio P. M., Paonita A. (2002) Genesis of chlorine and sulphur in fumarolic emissions at Vulcano Island (Italy): assessment of pH and redox conditions in the hydrothermal system. J. Volcanol. Geotherm. Res. 116, 137–150. Duffell H. J., Oppenheimer C., Pyle D. M., Galle B., McGonigle A. J. S., Burton M. R. (2003) Changes in gas composition prior to a minor explosive eruption at Masaya volcano, Nicaragua. J. Volcanol. Geotherm. Res. 126, 327–339. Fiebig J., Chiodini G., Caliro S., Rizzo A., Spangenberg J., Hunziker J. C. (2004) Chem. and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatichydrothermal systems. Geochim. Cosmochim. Acta 68, 2321–2334. Fischer T. P., Sturchio N. C., Stix J., Arehart G. B., Counce D., Williams S. N. (1997) The chemical and isotopic composition of fumarolic gases and spring discharges from Galeras Volcano, Colombia. J. Volcanol. Geotherm. Res. 77, 229–253. Fischer T. P. and Marty B. (2005) Volatile abundances in the sub-arc mantle: insights from volcanic and hydrothermal gas discharges. J. Volcanol. Geotherm. Res. 140, 205–216. Fournier R. O. and Potter R. W. (1982a) An equation correlating the solubility of quartz in water from 25°C to 900 °C at pressures up to 10.000 bars. Geochim. Cosmochim. Acta 46, 1969–1974. Fournier R. O. and Potter R. W. (1982b) A revised and expanded silica (quartz) geothermometers. Geotherm. Res. Council Bull. 5, 3–12. Gabbianelli G., Gillot P. V., Lanzafame G., Ligi M., Postpischl D. and Rossi P. L. (1986) Controllo strutturale nell’evoluzione vulcanica di Panarea (Isole Eolie). Italian National Res. Council Internal Report, pubbl. # 239, Catania, Italy. Gabbianelli G., Gillot P. Y., Lanzafame G., Romagnoli C. and Rossi P. L. (1990) Tectonic and volcanic evolution of Panarea (Aeolian Islands, Italy). Mar. Geol. 92, 313–326. Gabbianelli G., Romagnoli C., Rossi P. L. and Calanchi N. (1993)Marine geology of the Panarea-Stromboli area (Aeolian Archipelago,Southeastern Tyrrhenian sea). Acta Vulcanol. 3, 11–20. Giggenbach W. F. (1975) A simple method for the collection and analysis of volcanic gas sample. Bull. Volcanol. 39, 15–27. Giggenbach W. F. (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl. Geochem. 2, 143–161. Giggenbach W. F. (1996) Chemical composition of volcanic gases. In Monitoring and Mitigation of Volcanic Hazards (eds. R. Scarpa and R. I. Tilling), pp. 221–256. Springer. Helgeson H. C., Kirkham D. H. and Flowers G. C. (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of the activity coefficients, osmotic coefficients and apparent molal and standard and relative partial molar properties to 600°C and 5kb. Am. J. Sci. 281, 1249–1516. Inguaggiato S., Rizzo A. (2004) Dissolved helium isotope ratios in ground-waters: a new technique based on gas-water re-equilibration and its application to a volcanic area. App. Geochem. 19, 665–673. Italiano F. and Nuccio P. M. (1991) Geochemical investigations of submarine exhalations to the east of Panarea, Aeolian Islands, Italy. J. Volcanol. Geotherm. Res. 46, 125–141. Johnson J. W., Oelkers E. H. and Helgeson H. C. (1992) SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0°C to 1000°C. Comp. Geosci. 18, 899–947. Lilley M. D., Butterfierld D. A., Lupton J. E., Olson E. J. (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422, 878–881. Lowell R. P., Germanovich L. N. (1994) On the thermal evolution of high-temperature hydrothermal systems at ocean ridge crests. J. Geophys. Res. 99, 565–575. Norton D. L., Dutrow B. L. (2001) Complex behavior of magmahydrothermal processes: role of supercritical fluid. Geochim. Cosmochim. Acta 65, 4009–4017. Nuccio P. M., Paonita A., Sortino F. (1998) Hydrothermal system evolution induced by magma degassing: the case of Vulcano. In Water-Rock Interaction WRI-9 (eds. G. B. Arehart and J. R. Hulston), pp. 475–478. Balkema. Nuccio P. M., Paonita A., Sortino F. (1999) Geochemical modeling of mixing between magmatic and hydrothermal gases: the case of Vulcano. Earth Planet. Sci. Lett. 167, 321–333. Ozima M. and Podosek F. A. (2001) Noble gas geochemistry. Cambridge University Press, Cambridge, UK. Panichi C., La Ruffa G. (2001) Stable isotope geochemistry of fumaroles: an insight into volcanic surveillance. J. Geodyn. 32, 519–542. Paonita A., Favara R., Nuccio P. M. and Sortino F. (2002) Genesis of fumarolic emissions as inferred by isotope mass balances: CO2 and water at Vulcano Island, Italy. Geochim. Cosmochim. Acta 66,759–772. Sano Y. and Wakita H. (1985) Geographical distribution of 3He/4He in Japan: implications for arc tectonics and incipient magmatism. J. Geophys. Res. 90, 8729–8741. Sasada M., Goff F. (1995) Fluid inclusion evidence for rapid formation of the vapor-dominated zone at Sulphur Springs, Valles caldera, New Mexico, USA. J. Volcanol. Geotherm. Res. 67,161–169. Seewald J., Cruse A., Saccocia P. (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth Planet. Sci. Lett. 216, 575–590. Seyfried W. E. Jr., Seewald J. S., Berndt M. E., Ding K. and Foustoukos D. I. (2003) Chemistry of hydrothermal vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: Geochemical controls in the aftermath of June 1999 seismic events. J. Geophys. Res. 108 (B9), 2429, doi:10.1029/2002JB001957. Symonds R. B., Gerlach T. M. and Reed M. H. (2001) Magmatic gas scrubbing: implications for volcano monitoring. J. Volcanol. Geotherm. Res. 108, 303–341. Tassi F., Vaselli O., Capaccioni B., Macias J. L., Nencetti A., Montegrossi G., Magro G. (2003) Chem. composition of fumarolic gases and spring discharges from El Chichòn volcano, Mexico: causes and implications of the changes detected over the period 1998–2000. J. Volcanol. Geotherm. Res. 123, 105–121. Todesco M., Chiodini G., Macedonio G. (2003) Monitoring and modelling hydrothermal fluid emission at La Solfatara (Phlegrean Fields, Italy). An interdisciplinary approach to the study of diffuse degassing. J. Volcanol. Geotherm. Res. 125, 57–79. Todesco M., Rutqvist J., Chiodini G., Pruess K., Oldenburg C. M. (2004) Modeling of recent volcanic episodes at Phlegrean Fields (Italy): geochemical variations and ground deformation. Geotherm. 33, 531–547. Tonani F. (1980) Some remarks on the application of geochemical techniques in geothermal exploration. Proc. Adv. Eur. Geoth. Res. Second Int. Symp. 128, 4–6. March. Valensise G. and Pantosti D. (2001) Database of potential sources for earthquakes lager than M 5.5 in Italy. CD-ROM Database from INGV-Roma, INGV, Roma. Von Damm K. L. (2000) Chemistry of hydrothermal vent fluids from 9°–10°N, East Pacific Rise: ‘Time zero’, the immediate post-eruptive period. J. Geophys. Res. 105, 11203–11222. Von Damm K. L., Oosting S. E., Koslowski R., Buttermore L. G., Colodner D. C., Edmonds H. N., Edmond J. M. m, Grebmeier J. (1995) Evolution of East Pacific Rise hydrothermal vent fluids following a volcanic eruption. Nature 375, 47–50. Von Damm K. L., Buttermore L. G., Oosting S. E., Bray A. M., Fornari D. J., Lilley M. D., Shanks W. C. (1997) Direct observation of the evolution of a seafloor ‘black smoker’ from vapor to brine. Earth Planet. Sci. Lett. 149, 101–111. Von Damm K. L., Parker C. M., Gallant R. M., Loveless J. P. (2002)Chem. evolution of hydrothermal fluids from EPR 21°N: 23 years later in a phase separating world. EOS Trans. AGU, 83(47), Fall Meet. Suppl., Abstract V61B-1365. Von Damm K. L., Lilley M. D., Shanks W. C. III, Brockington M., Bray A. M., O’Grady K. M., Olson E., Graham A., Proskurowski G. and the SouEPR Science Party. (2003) Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth Planet. Sci. Lett. 206, 365–378.en
dc.description.fulltextpartially_openen
dc.contributor.authorCaracausi, A.en
dc.contributor.authorDitta, M.en
dc.contributor.authorItaliano, F.en
dc.contributor.authorLongo, M.en
dc.contributor.authorNuccio, P. M.en
dc.contributor.authorPaonita, A.en
dc.contributor.authorRizzo, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento Chimica e Fisica della Terra ed Applicazioni, Via Archirafi 36, 90123 Palermo, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptUniversità di Palermo-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.orcid0000-0003-2510-2890-
crisitem.author.orcid0000-0002-9465-6398-
crisitem.author.orcid0000-0002-9465-2653-
crisitem.author.orcid0000-0001-9124-5027-
crisitem.author.orcid0000-0003-2225-3781-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Caracausi et al., GCA 2005.pdfMain article612.58 kBAdobe PDF
Redirect Elsevier.htmlRedirect-Elsevier539 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

44
checked on Feb 10, 2021

Page view(s) 10

402
checked on Mar 27, 2024

Download(s)

90
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric