Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5061
DC FieldValueLanguage
dc.contributor.authorallRochette, P.; CEREGE, CNRS Aix-Marseille University, BP80 13545 Aix en Provence, Cedex 4, Franceen
dc.contributor.authorallGattacceca, J.; CEREGE, CNRS Aix-Marseille University, BP80 13545 Aix en Provence, Cedex 4, Franceen
dc.contributor.authorallBourot-Denise, M.; Museum National d’Histoire Naturelle, Paris, Franceen
dc.contributor.authorallConsolmagno, G.; Specola Vaticana, Vatican City Stateen
dc.contributor.authorallFolco, L.; Museo Nazionale dell'Antartide, Università di Siena, Italyen
dc.contributor.authorallKohout, T.; 5University of Helsinki, Finlanden
dc.contributor.authorallPesones, L.; 5University of Helsinki, Finlanden
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2009-05-28T12:05:33Zen
dc.date.available2009-05-28T12:05:33Zen
dc.date.issued2009en
dc.identifier.urihttp://hdl.handle.net/2122/5061en
dc.description.abstractA database of magnetic susceptibility measurements of stony achondrites (acapulcoitelodranite clan, winonaites, ureilites, angrites, aubrites, brachinites, howardite-eucrite-diogenite (HED) clan, and Martian meteorites, except lunar meteorites) is presented and compared to our previous work on chondrites. This database provides an exhaustive study of the amount of iron-nickel magnetic phases (essentially metal and more rarely pyrrhotite and titanomagnetite) in these meteorites. Except for ureilites, achondrites appear much more heterogeneous than chondrites in metal content, both at the meteorite scale and at the parent body scale. We propose a model to explain the lack of or inefficient metal segregation in a low gravity context. The relationship between grain density and magnetic susceptibility is discussed. Saturation remanence appears quite weak in most metal-bearing achondrites(HED and aubrites)compared to Martian meteorites. Ureilites are a notable exception and can carry a strong remanence, similar to most chondrites.en
dc.language.isoEnglishen
dc.publisher.nameThe Meteoritical Societyen
dc.relation.ispartofMeteoritics & Planetary Scienceen
dc.relation.ispartofseries3 / 44 (2009)en
dc.subjectmeteoritesen
dc.subjectmagnetic susceptibilityen
dc.subjectrock magnetismen
dc.titleMagnetic classification of stony meteorites: 3. Achondritesen
dc.typearticleen
dc.description.statusPublisheden
dc.description.pagenumber405 - 427en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetismen
dc.relation.referencesBouhifd M. A., Richet P., Besson P., Roskosz M., and Ingrin J. 2004. Redox state, microstructure and viscosity of a partially crystallized basalt melt. Earth and Planetary Science Letters 218:31–44. Brecher A. and Furhman M. 1979. The magnetic effects of brecciation and shock in meteorites: II. The ureilites and evidence for strong nebula magnetic fields. The Moon and the Planets 20:251–263. Brecher A., Furhman M., and Stein J. 1979. The magnetic effects of brecciation and shock in meteorites: III. The achondrites. The Moon and the Planets 20:265–279. Britt D. T. and Consolmagno G. J. 2003. Stony meteorite porosities and densities: A review of the data through 2001. Meteoritics & Planetary Science 38:1161–1180. Burroni and Folco L. 2008. Frontier Mountain meteorite specimens of the acapulcoite-lodranite clan: Petrography, pairing and parent-rock lithology of an unusual intrusive rock. Meteoritics & Planetary Science 43:1–14. Carmichael R. S. 1989. Practical handbook of physical properties of rocks and minerals. Boca Raton, FL: CRC Press. 741 p. Chevrier V., Mathé P. E., Rochette P., Grauby O., Bourrié G., and Trolard F. 2006. Iron weathering products in a CO2 + (H2O or H2O2) atmosphere: Implications for Mars surface. Geochimica et Cosmochimica Acta 70:4295–4317. Fig. 10. Range of logχ values observed for the various achondrite groups (except ureilite and Martian meteorites). Main population spread is shown with a thick arrow while outliers or related meteorites (see text) are connected to the main arrow with a thinner one. Cisowski S. M. 1986. Magnetic study on Shergotty and other SNC meteorites. Geochimica et Cosmochimica Acta 50:1043–1048. Cisowski S. M. 1991. Remanent magnetic properties of unbrecciated eucrites. Earth and Planetary Science Letters 107:173–181. Coey J. M. D., Roux-Buisson H., and Brussetti R. 1976. The electronic phase transitions in FeS and NiS. In Metal-non metal transitions in transition metal compounds. London: Taylor and Francis. Collinson D. W. 1991. Magnetic properties of the Estherville mesosiderite. Meteoritics 26:1–10. Collinson D. W. 1986. Magnetic properties of Antarctic shergottite meteorites EETA79001 and ALHA77005: Possible relevance to a Martian magnetic field. Earth and Planetary Science Letters 77:159–164. Collinson D. W. 1997. Magnetic properties of Martian meteorites. Meteoritics & Planetary Science 32:803–811. Collinson D. W. and Morden S. J. 1994. Magnetic properties of howardite, eucrite and diogenite (HED) meteorite: Ancient magnetizing fields and meteorite evolution. Earth and Planetary Science Letters 126:421–434. Consolmagno G. J., Macke R. J., Rochette P., Britt D. T., and Gattacceca J. 2006. Density, magnetic susceptibility, and the characterization of ordinary chondrite falls and showers. Meteoritics and Planetary Science 41:331–342. Dekkers M. J. 1988. Magnetic properties of natural pyrrhotite part I: Behaviour of initial susceptibility and saturation magnetization related rock magnetic parameters in a grain size dependent framework. Physics of the Earth and Planetary Interiors 52:376– 393. Demidova S. I., Nazarov M. A., Kurat G., Brandstätter F., Ntaflos T., Clayton R. N., and Mayeda T. K. 2004. Dhofar 732: A Mg-rich orthopyroxenitic achondrite (abstract #1266). 35th Lunar and Planetary Science Conference. CD-ROM. Dingwell D. B., Courtial P., Giordano D., and Nichols A. R. L. 2004. Viscosity of peridotite liquid. Earth and Planetary Science Letters 226:127–138. Floss C., Crozaz G., McKay G., Mikouchi T., and Killgore M. 2003. Petrogenesis of angrites. Geochimica et Cosmochimica Acta 67: 4775–4789. Folco L., Bland P. A., D’Orazio M., Franchi I. A., Kelley S. P., and Rocchi S. 2004. Extensive impact melting on the H-chondrite parent asteroid during the cataclysmic bombardment of the early solar system: Evidence from the achondritic meteorite Dar al Gani 896. Geochimica et Cosmochimica Acta 68:2379– 2397. Folco L., Rochette P., Gattacceca J., and Perchiazzi N. 2006. In situ identification, pairing and classification of meteorites from Antarctica by magnetic methods. Meteoritics & Planetary Science 41:343–353. Folco L., D’Orazio M., and Burroni A. 2006. Frontier Mountain 93001: A coarse-grained, enstatite-augite-oligoclase-rich, igneous rock from the acapulcoite-lodranite parent asteroid. Meteoritics and Planetary Science 41:1183–1198. Funaki M., Taguchi I., Danon J., Nagata T., and Kondo Y. 1988. Magnetic and metallographical studies of the Bocaiuva iron meteorite. Proceedings of the NIPR Symposium on Antarctic Meteorites 1:231–246. Funaki M. and Danon J. 1998. Characteristics of natural remanent magnetization of Nova Petropolis iron meteorite. Antarctic Meteorite Research 11:189–201. Fuller M. and Cisowski S. M. 1987. Lunar paleomagnetism. In Geomagnetism, vol. 2, edited by Jacobs J. A. London: Academic Press. pp. 307– 455. Gardner K. G., Lauretta D. S., and Killgore M. 2007. Petrology of ungrouped achondrites RBT 04239 and Tafassasset: A comparison to Divnoe and the brachinites (abstract #2086). 37th Lunar and Planetary Science Conference. CD-ROM. Gattacceca J. and Rochette P. 2004. Toward a robust paleointensity estimate for meteorites. Earth and Planetary Science Letters 227: 377–393. Gattacceca J., Eisenlohr P., and Rochette P. 2004a. Calibration of in situ magnetic susceptibility measurements. Geophysical Journal International 158:42–49. Gattacceca J., Orsini J. -B., Henry B., Rochette P., Rossi P., and Cherchi G. 2004b. Late-Hercynian tectonic environment revealed by anisotropy of magnetic susceptibility of Hercynian granitoids from southern Corsica and northern Sardinia. Journal of the Geological Society 161:277–289. Gattacceca J., Rochette P., Denise M., Consolmagno G., and Folco L. 2005. An impact origin for the foliation of ordinary chondrites. Earth and Planetary Science Letters 234:351–368. Gattacceca J., Rochette P., Gounelle M., and Van Ginneken M. 2008. Magnetic anisotropy of HED and Martian meteorites and implications for the crust of Vesta and Mars. Earth and Planetary Science Letters 270:280–289. Goodrich C. A. 1992. Ureilites: A critical review. Meteoritics 27: 327–352. Goodrich C. A, Van Orman J. A., and Wilson L. 2007. Fractional melting and smelting on the ureilite parent body. Geochimica et Cosmochimica Acta 71:2876–2895. Giordano D., Mangiacapra A., Potuzak M., Russel J. K., Romano C., Dingwell D. B., and Di Muro A. 2006. An expanded non- Arrhenian model for silicate melt viscosity: A treatment for metaluminous, peraluminous and peralkaline liquids. Chemical Geology 229:42–56. Gounelle M., Zolensky M. E., Liou J. C., Bland P. A., and Alard O. 2003. Mineralogy of carbonaceous microclasts in howardites: Identification of C2 fossil micrometeorites. Geochimica et Cosmochimica Acta 67:507–527. Grady M. 2000. Catalogue of meteorites, 5th ed. Cambridge: Cambridge University Press. 689 p. Greenwood R., Franchi I., Jambon A., and Buchanan C. 2005. Widespread magma oceans on asteroidal bodies in the early solar system. Nature 4351:916–918. Greenwood R., Franchi I., Jambon A., Barrat J. A., and Burbine T. H. 2006. Oxygen isotope variation in stony iron meteorites. Science 313:1763–1765. Herrin J. S., Mittlefehldt D. W., Downes H., and Humayun M. 2007. Diverse metals and sulfides in polynict ureilites EET 83309 and EET 87720 (abstract#2404). 38th Lunar and Planetary Science Conference. CD-ROM. Hewins R. H. 1979. The composition and origin of metal in howardites. Geochemica et Cosmochemica Acta 43:1663–1673. Hoffmann V., Funaki M., Torii M., Kurihara T., and Mikouchi T. 2008. Magnetic signature of lherzolitic shergottites ALH 77005 and Yamato-000097: Brown color olivines and detection of Fe metal particles by magnetotactic bacteria (abstract#1703). 39th Lunar and Planetary Science Conference. CD-ROM. Humayun M., Irving A. J., and Kuehner S. M. 2007. Siderophile elements in metal from metal-rich angrite NWA 2999 (abstract#1221). 38th Lunar and Planetary Science Conference. CD-ROM. Jarosewich E. 1990. Chemical analysis of meteorites: Compilation of stony and iron meteorite analyses. Meteoritics 25:323–337. Jull A. J. T. 2006. Terrestrial ages of meteorites. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y. Jr. Tucson, AZ: The University of Arizona Press. pp. 889– 905. Keil K. 2007. Occurrence and origin of keilite, (Fe > 0.5,Mg < 0.5)S, in enstatite chondrite impact-melt rocks and impact-melt breccias. Chemie der Erde 67:37–54. Keil K., Berkley J. L., and Fuchs L. H. 1982. Suessite, Fe3Si: A new mineral in the North Haig ureilite. American Mineralogist 67: 126–131. Kohout T., Jackson M., Kosterov A., Kletetschka G., Lehtinen M., and Pesonen L. J. 2007. Low-temperature magnetic properties of the Neuschwanstein EL6 meteorite. Earth and Planetary Science Letters 261:143–151. Kohout T., Kletetschka G., Elbra T., Adachi T., Mikula V., Pesonen L. J., Schnabl P., and Slechta S. 2008. Physical properties of meteorites—Applications in space missions to asteroids. Meteoritics & Planetary Science 43:1009–1020. Kuehner S. M., Irving A. J., Bunch T. E., Wittke J. H., Hupé G. M., and Hupé A. C. 2006. Coronas and symplectites in plutonic angrite NWA 2999 and implications for Mercury as the angrite parent body (abstract #1344). 37th Lunar and Planetary Science Conference. CD-ROM. Kurat G, Varela M. E., Brandstatter F., Weckwerth G., Clayton R. N., Weber H. W., Schultz L., Wasch E., and Nazarov M. A. 2004. D’Orbigny: A non-igneous angritic achondrite? Geochimica et Cosmochimica Acta 68:1901–1921. Latham A. G., Harding K. L., Lapointe P., Morris W. A., and Balch S. J. 1989. On the log normal distribution of oxides in rocks, using magnetic susceptibility as a proxy for oxide mineral concentration. Geophysical Journal International 96:179–184. Lecoanet H., Leveque F., and Segura S. 1999. Magnetic susceptibility in environmental application: Comparison of field probes. Physics of the Earth and Planetary Interiors 115:191–204. Liebske C., Schmickler B., Terasaki H., Poe B. T., Suzuki A., Funakoshi K., Ando R., and Rubie D. C. 2005. Viscosity of peridotite liquid up to 13 GPa: Implications for magma ocean viscosities. Earth and Planetary Science Letters 240:589– 604. Lin Y., Luo H., Hu S., Feng L., Liu T., and Miao B. 2008. Magnetic susceptibility of Grove Mountains meteorites (abstract #4011). Meteoritics & Planetary Science 43:A185. Lorenz C. A., Ivanova M. A., Nazarov M. A., Mayeda T. K., and Clayton R. N. 2003. A new primitive ungrouped achondrite, Dhofar 500: Links to winonaites and silicate inclusions from IAB and IIICD irons (abstract #5045). Meteoritics & Planetary Science 38:A30. McCoy T. J., Keil K., Muenow D. W., and Wilson L. 1997. Partial melting and melt migration in the acapulcoite-lodranite parent body. Geochimica et Cosmochimica Acta 61:639–650. McCoy T. J., Mittlefehldt D. W., and Wilson L. 2006. Asteroid differenciation. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y. Jr. Tucson, AZ: The University of Arizona Press. pp. 733–745. Mittlefehldt D. W., McCoy T. J., Goodrich C. A., and Kracher A. 1998. Non-chondritic meteorites from asteroidal bodies. In Planetary materials, edited by Papike J. J. Reviews in Mineralogy and Geochemistry, vol. 36. Chapter 3. Morden S. J. 1992. A magnetic study of the Millbillillie (eucrite) achondrite: Evidence for a dynamo-type magnetizing field. Meteoritics 27:560–567. Nagata T. 1979. Meteorite magnetism and the early solar system magnetic field. Physics of the Earth and Planetary Interiors 20: 324–341. Nagata T. and Funaki M. 1984. Notes on magnetic properties of Antarctic polymict eucrites. Memoirs of the National Institute for Polar Research 35:319–326. Nagata T and Funaki M. 1986. Magnetic properties of Yamato- 791197 in comparison with those of lunar highland anorthositic breccias. Memoirs of the National Institute for Polar Research 41:152–164. Nagata T., Danon J., and Funaki M. 1987. Magnetic properties of Nirich iron meteorites. Memoirs of the National Institute for Polar Research 46:263–282. Palme H., Wlotzka F., Spettel B., Dreibus G., and Weber H. 1988. Camel Donga: A eucrite with high metal content. Meteoritics 23: 49–57. Pesonen L. J., Terho M., and Kukkonen I. 1993. Physical properties of 368 meteorites. Implications for meteorite magnetism and planetary geophysics. Proceedings of the NIPR Symposium on Antarctic Meteorites 6:401–406. Pieters C. M., Taylor L. A., Noble S. K., Keller L. P., Hapke B., Morris R. V., Allen C. C., McKay D. S., and Wentworth S. 2000. Space weathering on airless bodies: Resolving a mystery with lunar samples. Meteoritics & Planetary Science 35:1101–1107. Roberts J. J., Kinney J. H., Siebert J., and Ryerson F. J. 2007. Fe-Ni- S melt permeability in olivine: Implications for planetary core formation. Geophysical Research Letters 34:L14306, doi: 10.1029/2007GL030497. Rochette P. 1987. Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Journal of Structural Geology 9: 1015–1020. Rochette P., Aubourg C., and Perrin M. 1999. Is this magnetic fabric normal? A review and case studies in volcanic formations. Tectonophysics 307:219–234. Rochette P., Sagnotti L., Consolmagno G., Folco L., Maras A., Panzarino F., Pesonen L., Serra R., and Terho M. 2001a. A magnetic susceptibility database for stony meteorites. Quaderni di Geofisica 18. 30 p. Rochette P., Lorand J. P., Fillion G., and Sautter V. 2001b. Pyrrhotite and the remanent magnetization of SNC meteorites: A changing perspective on Martian magnetism. Earth and Planetary Science Letters 190:1–12. Rochette P., Gattacceca J., Menvielle P., Eisenlohr P., and Chevrier V. 2004. Interest and design of magnetic properties measurements on planetary and asteroidal landers. Planetary and Space Science 52:987–995. Rochette P., Sagnotti L., Bourot-Denise M., Consolmagno G., Folco L., Gattacceca J., Osete M. L., and Pesonen L. 2003. Magnetic classification of stony meteorites: 1. Ordinary chondrites. Meteoritics & Planetary Science 38:251–268. Rochette P., Gattacceca J., Chevrier V., Hoffmann V., Lorand J. P., Funaki M., and Hochleitner R. 2005. Matching Martian crustal magnetization and meteorite magnetic properties. Meteoritics & Planetary Science 40:529–540. Rochette P., Gattacceca J., Bonal L., Bourot-Denise M., Chevrier V., Clerc J. P., Consolmagno G., Folco L., Gounelle M., Kohout T., Pesonen L., Quirico E., Sagnotti L., and Skripnik A. 2008. Magnetic classification of stony meteorites: 2. Non-ordinary chondrites. Meteoritics & Planetary Science 43:959–980. Rochette P., Gattacceca J., Ivanov A., Nazarov M., and Bezaeva N. 2008. Magnetic properties of lunar materials: Comparison between meteorites and sample return (abstract). Meteoritics & Planetary Science 43:A133. Rubin A. E. 1997. Mineralogy of meteorite groups—An update. Meteoritics & Planetary Science 32:733–734. Rushmer T., Petford N., Humayun M., and Campbell A. J. 2005. Feliquid segregation in deforming planetesimals: Coupling coreforming compositions with transport phenomena. Earth and Planetary Science Letters 239:185–202. Sagnotti L., Rochette P., Jackson M., Vadeboin F., Dinares-Turrel J., Winkler A., and MAGNET Science Team. 2003. Inter-laboratory calibration of low field and anhysteric susceptibility measurements. Physics of the Earth and Planetary Interiors 138: 25–38. Smith D. L., Ernst R. E., Samson C., and Herd R. 2006. Stony meteorite characterization by non-destructive measurement of magnetic properties. Meteoritics & Planetary Science 41:355–373. Sugiura N. 1977. Magnetic properties and remanent magnetization of stony meteorites. Journal of Geomagnetism and Geoelectricity 29:519–539. Sugiura N. and Strangway D. W. 1987. Magnetic studies of meteorites. In Meteorites and the early solar system, edited by Kerridge J. F. and Matthews M. S. Tucson, AZ: The University of Arizona Press. pp. 595–615. Takeda H., Mori H., Hiroi T., and Saito J. 1994. Mineralogy of new Antarctic achondrites with affinity to Lodran and a model of their evolution in an asteroid. Meteoritics 29:830–842. Taylor G. J. 1992. Core formation in asteroids. Journal of Geophysical Research 97:14,717–14,726. Terho M., Pesonen L. J., and Kukkonen I. T. 1991. The petrophysical classification of meteorites: New results. Geological Survey of Finland Report Q29.1/91/1. Terho M., Pesonen L. J., Kukkonen I. T., and Bukovanska M. 1993. The petrophysical classification of meteorites. Studia Geophysica et Geodetica 37:65–82. Van de Moortèle B., Reynard B., Rochette P., Jackson M., Beck P., Gillet P., McMillan P. F., and McCammon C. A. 2007. Shockinduced metallic iron nanoparticles in olivine-rich Martian meteorites. Earth and Planetary Science Letters 262:37–49. Warren P. H. and Huber H. 2006. Ureilite petrogenesis: A limited role for smelting during anatexis and catastrophic disruption. Meteoritics & Planetary Science 41:835–849. Weiss B. P., Lima E. A., and Zucolotto M. E. 2008. Magnetism of the angrite parent body (abstract #2143). 39th Lunar and Planetary Science Conference. CD-ROM. Welten K. C., Nishiizumi K., Caffee M. W., and Hillegonds D. J. 2006. Cosmogenic radionuclides in ureilites from Frontier Mountain, Antarctica: Evidence fo a polymict breccia (abstract #2391). 37th Lunar and Planetary Science Conference. CD-ROM. Wilson K. and Keil K. 1991. Consequences of explosive eruptions on small solar system bodies—The case of the missing basalts on the aubrite parent body. Earth and Planetary Science Letters 104:505– 512. Zolensky M. E., Weisberg M. K., Buchanan P. C., and Mittlefehldt D. W. 1996. Mineralogy of carbonaceous chondrite clasts in HED achondrites and the Moon. Meteoritics & Planetary Science 31:518–537.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorRochette, P.en
dc.contributor.authorGattacceca, J.en
dc.contributor.authorBourot-Denise, M.en
dc.contributor.authorConsolmagno, G.en
dc.contributor.authorFolco, L.en
dc.contributor.authorKohout, T.en
dc.contributor.authorPesones, L.en
dc.contributor.authorSagnotti, L.en
dc.contributor.departmentCEREGE, CNRS Aix-Marseille University, BP80 13545 Aix en Provence, Cedex 4, Franceen
dc.contributor.departmentCEREGE, CNRS Aix-Marseille University, BP80 13545 Aix en Provence, Cedex 4, Franceen
dc.contributor.departmentMuseum National d’Histoire Naturelle, Paris, Franceen
dc.contributor.departmentSpecola Vaticana, Vatican City Stateen
dc.contributor.departmentMuseo Nazionale dell'Antartide, Università di Siena, Italyen
dc.contributor.department5University of Helsinki, Finlanden
dc.contributor.department5University of Helsinki, Finlanden
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversité d’Aix Marseille 3, UMR CNRS 6635, CEREGE Europole de l’Arbois BP80 13545 Aix en Provence Cedex 4, France-
crisitem.author.deptJérôme Gattacceca, CEREGE, Aveneu Philibert, BP 80, 13545 Aix-en-Provence Cedex 4, France-
crisitem.author.deptMuséum National d’Histoire Naturelle, LEME, Paris, France-
crisitem.author.deptSpecola Vaticana, Vatican City State-
crisitem.author.deptMuseo Nazionale dell'Antartide, Università di Siena, via Laterina 8, I-53100 Siena, Italy-
crisitem.author.dept5University of Helsinki, Finland-
crisitem.author.deptUniversity of Helsinki, Helsinki, Finland-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Rochette_et_al_09_MAPS.pdfmain article2.18 MBAdobe PDF
Show simple item record

Page view(s) 20

394
checked on Apr 17, 2024

Download(s)

45
checked on Apr 17, 2024

Google ScholarTM

Check