Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5059
DC FieldValueLanguage
dc.contributor.authorallHui, H.; Lunar and Planetary Institute, USRA-Houston, Houston (TX) USAen
dc.contributor.authorallZhang, Y.; Department of Geological Sciences, The University of Michigan, Ann Arbor (MI) USAen
dc.contributor.authorallXu, Z.; Department of Geological Sciences, The University of Michigan, Ann Arbor (MI) USAen
dc.contributor.authorallDel Gaudio, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBehrens, H.; Institut für Mineralogie, Universität Hannover, Hannover Germanyen
dc.date.accessioned2009-05-26T06:33:58Zen
dc.date.available2009-05-26T06:33:58Zen
dc.date.issued2009-06-15en
dc.identifier.urihttp://hdl.handle.net/2122/5059en
dc.description.abstractViscosity of silicate melts is a critical property for understanding volcanic and igneous processes in the Earth. We investigate the pressure effect on the viscosity of rhyolitic melts using two methods: indirect viscosity inference from hydrous species reaction in melts using a piston cylinder at pressures up to 2.8 GPa and direct viscosity measurement by parallel-plate creep viscometer in an internally-heated pressure vessel at pressures up to 0.4 GPa. Comparison of viscosities of a rhyolitic melt with 0.8 wt% water at 0.4 GPa shows that both methods give consistent results. In the indirect method, viscosities of hydrous rhyolitic melts were inferred based on the kinetics of hydrous species reaction in the melt upon cooling (i.e., the equivalence of rheologically defined glass transition temperature and chemically defined apparent equilibrium temperature). The cooling experiments were carried out in a piston-cylinder apparatus using hydrous rhyolitic samples with 0.8–4 wt% water. Cooling rates of the kinetic experiments varied from 0.1 K/s to 100 K/s; hence the range of viscosity inferred from this method covers 3 orders of magnitude. The data from this method show that viscosity increases with increasing pressure from 1 GPa to 3 GPa for hydrous rhyolitic melts with water content 0.8 wt% in the high viscosity range. We also measured viscosity of rhyolitic melt with 0.13 wt% water using the parallel-plate viscometer at pressures 0.2 and 0.4 GPa in an internally-heated pressure vessel. The data show that viscosity of rhyolitic melt with 0.13 wt% water decreases with increasing pressure. Combining our new data with literature data, we develop a viscosity model of rhyolitic melts as a function of temperature, pressure and water content.en
dc.description.sponsorshipNSF Grants EAR-0537598 and EAR-0711050en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofGeochimica et Cosmochimica Actaen
dc.relation.ispartofseries12/73 (2009)en
dc.subjectviscosityen
dc.subjectrhyoliteen
dc.subjectwater speciesen
dc.subjectpressureen
dc.titlePressure dependence of viscosity of rhyolitic meltsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber3680-3693en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.identifier.doi10.1016/j.gca.2009.03.035en
dc.relation.referencesAkella J., Ganguly J., Grover R. and Kennedy G. (1973) Melting of lead and zinc to 60 kbar. J. Phys. Chem. Solids 34, 631–636. Ardia P., Giordano D. and Schmidt M. W. (2008) A model for the viscosity of rhyolite as a function of H2O-content and pressure: a calibration based on centrifuge piston cylinder experiments. Geochim. Cosmochim. Acta 72, 6103–6123. Behrens H. and Jantos N. (2001) The effect of anhydrous composition on water solubility of granitic melts. Am. Mineral. 86, 14–20. Behrens H. and Nowak M. (2003) Quantification of H2O speciation in silicate glasses and melts by IR spectroscopy – in situ versus quench techniques. Phase Trans. 76, 45–61. Behrens H. and Schulze F. (2003) Pressure dependence of melt viscosity in the system NaAlSi3O8–CaMgSi2O6. Am. Mineral. 88, 1351–1363. Behrens H., Zhang Y., Leschik M., Wiedenbeck M., Heide G. and Frischat G. H. (2007) Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts. Earth Planet. Sci. Lett. 254, 69–76. Bottinga Y. and Weill D. F. (1972) The viscosity of magmatic silicate liquids: a model for calculation. Am. J. Sci. 272, 438– 475. Dingwell D. B. (1986) Viscosity–temperature relationships in the system Na2Si2O5–Na4Al2O5. Geochim. Cosmochim. Acta 50, 1261–1265. Dingwell D. B. (1998) Melt viscosity and diffusion under elevated pressures. Rev. Mineral. 37, 397–422. Dingwell D. B. and Webb S. L. (1990) Relaxation in silicate melts. Eur. J. Mineral. 2, 427–449. Dorfman A., Dingwell D. B. and Bagdassarov N. S. (1997) A rotating autoclave for centrifuge studies: falling sphere viscometry. Eur. J. Mineral. 9, 345–350. Friedman I., Long W. and Smith R. L. (1963) Viscosity and water content of rhyolitic glass. J. Geophys. Res. 68, 6523–6535. Funakoshi K.-i., Suzuki A. and Terasaki H. (2002) In situ viscosity measurements of albite melt under high pressure. J. Phys.: Condens. Matter 14, 11343–11347. Girodano D., Romano C., Dingwell D. B., Poe B. and Behrens H. (2004) The combined effects of water and fluorine on the viscosity of silicic magmas. Geochim. Cosmochim. Acta 68, 5159–5168. Hess K.-U. and Dingwell D. B. (1996) Viscosities if hydrous leucogranitic melts: a non-Arrhenian model. Am. Mineral. 81, 1297–1300. Hui H. and Zhang Y. (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim. Cosmochim. Acta 71, 403–416. Hui H., Zhang Y., Xu Z. and Behrens H. (2008) Pressure dependence of the speciation of dissolved water in rhyolitic melts. Geochim. Cosmochim. Acta 72, 3229–3240. Hummel W. and Arndt J. (1985) Variation of viscosity with temperature and composition in the plagioclase system. Contrib. Mineral. Petrol. 90, 83–92. Ihinger P. D., Zhang Y. and Stolper E. M. (1999) The speciation of dissolved water in rhyolitic melt. Geochim. Cosmochim. Acta 63, 3567–3578. Kanzaki M., Kurita K., Fujii T., Kato T., Shimomura O. and Akimoto S. (1987) A new technique to measure the viscosity and density of silicate melts at high pressure. In High-Pressure Research in Mineral Physics, vol. 39 (eds. M. H. Manghnani and Y. Syono). Geophysical Monograph, pp. 195–200. Kushiro I. (1976) Changes in viscosity and structure of melt of NaAlSi2O6 composition at high pressures. J. Geophys. Res. 81, 6347–6350. Kushiro I. (1978) Density and viscosity of hydrous calc-alkalic andesite magma at high pressures. Carnegie Inst. Washington Year Book 77, 675–677. Kushiro I., Yoder, Jr., H. S. and Myson B. O. (1976) Viscosities of basalt and andesite melts at high pressures. J. Geophys. Res. 81, 6351–6356. Lange R. A. (1994) The effect of H2O, CO2 and F on the density and viscosity of silicate melts. Rev. Mineral. 30, 331–365. Lees J. and Williamson B. H. J. (1965) Combined very high pressure/high temperature calibration of the tetrahedral anvil apparatus, fusion curves of zinc, aluminium, germanium and silicon to 60 kilobars. Nature 208, 278–279. Liebske C., Behrens H., Holtz F. and Lange R. A. (2003) The influence of pressure and composition on the viscosity of andesitic melts. Geochim. Cosmochim. Acta 67, 473–485. Liebske C., Schmickler B., Terasaki H., Poe B. T., Suzuki A., Funakoshi K.-i., Ando R. and Rubie D. C. (2005) Viscosity of peridotite liquid up to 13 GPa: implications for magma ocean viscosities. Earth Planet. Sci. Lett. 240, 589–604. Lillie H. R. (1931) Viscosity of glass between the strain point and melting temperature. J. Am. Ceram. Soc. 14, 502–512. Liu Y. and Zhang Y. (2000) Bubble growth in rhyolitic melt. Earth Planet. Sci. Lett. 181, 251–264. Moynihan C. T., Easteal A. J., Wilder J. and Tucker J. (1976) Dependence of the glass transition temperature on heating and cooling rate. J. Phys. Chem. 78, 2673–2677. Neuville D. R. and Richet P. (1991) Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets. Geochim. Cosmochim. Acta 55, 1011–1019. Neuville D. R., Courtial P., Dingwell D. B. and Richet P. (1993) Thermodynamic and rheological properties of rhyolite and andesite melts. Contrib. Mineral. Petrol. 113, 572–581. Newman S., Stolper E. M. and Epstein S. (1986) Measurement of water in rhyolitic glasses: calibration of an infrared spectroscopic technique. Am. Mineral. 71, 1527–1541. Ni H. and Zhang Y. (2008) H2O diffusion models in rhyolitic melt with new high pressure data. Chem. Geol. 250, 68–78. Rapp R. P. and Watson E. B. (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J. Petrol. 36, 891–931. Reid J. E., Suzuki A., Funakoshi K., Terasaki H., Poe B. T., Rubie D. C. and Ohtani E. (2003) The viscosity of CaMgSi2O6 liquid at pressures up to 13 GPa. Phys. Earth Planet. Inter. 139, 45–54. Rosenhauer M., Scarfe C. M. and Virgo D. (1979) Pressure dependence of the glass transition temperature in glasses of diopside, albite, and sodium trisilicate composition. Carnegie Inst. Washington Year Book 78, 556–559. Scarfe C. M. and Cronin D. J. (1986) Viscosity–temperature relationships at 1 atm in the system diopside–albite. Am. Mineral. 71, 767–771. Scarfe C. M., Mysen B. O. and Virgo D. (1979) Changes in viscosity and density of melts of sodium disilicate, sodium metasilicate, and diopside composition with pressure. Carnegie Inst. Washington Year Book 78, 547–551. Scarfe C. M., Mysen B. O. and Virgo D. (1987) Pressure dependence of the viscosity of silicate melts. In Magmatic Processes: Physicochemical Principles. Geochem. Soc. Spec. Pub. (ed. B.O. Mysen), vol. 1. pp. 59–67. Scherer G. W. (1984) Use of the Adam–Gibbs equation in the analysis of structural relaxation. J. Am. Ceram. Soc. 67, 504– 511. Schulze F., Behrens H. and Hurkuck W. (1999) Determination of the influence of pressure and dissolved water on the viscosity of highly viscous melts: application of a new parallel-plate viscometer. Am. Mineral. 84, 1512–1520. Schulze F., Behrens H., Holtz F., Roux J. and Johannes W. (1996) The influence of H2O on the viscosity of a haplogranitic melt. Am. Mineral. 81, 1155–1165. Shaw H. R. (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature range 700 to 900 C. J. Geophys. Res. 68, 6337–6343. Shaw H. R. (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. Am. J. Sci. 272, 870–893. Silver L. A., Ihinger P. D. and Stolper E. (1990) The influence of bulk composition on the speciation of water in silicate glasses. Contrib. Mineral. Petrol. 104, 142–162. Sipp A. and Richet P. (2002) Equivalence of volume, enthalpy and viscosity relaxation kinetics in glass-forming silicate liquids. J. Non-Cryst. Solids 298, 202–212. Stevenson R. J., Dingwell D. B., Webb S. L. and Bagdassarov N. S. (1995) The equivalence of enthalpy and shear stress relaxation in rhyolitic obsidians and quantification of the liquid–glass transition in volcanic processes. J. Volcanol. Geotherm. Res. 68, 297–306. Stolper E. M. (1982a) The speciation of water in silicate melts. Geochim. Cosmochim. Acta 46, 2609–2620. Stolper E. M. (1982b) Water in silicate glasses: an infrared spectroscopic study. Contrib. Mineral. Petrol. 81, 1–17. Sylvester P. J. (1998) Post-collisional strongly peraluminous granites. Lithos 45, 29–44. Tinker D., Lesher C. E., Baxter G. M., Uchida T. and Wang Y. (2004) High-pressure viscometry of polymerized silicate melts and limitations of the Eyring equation. Am. Mineral. 89, 1701– 1708. Toplis M. J., Gottsmann J., Knoche R. and Dingwell D. B. (2001) Heat capacities of haplogranitic glasses and liquids. Geochim. Cosmochim. Acta 65, 1985–1994. Whittington A., Richet P. and Holtz F. (2000) Water and the viscosity of depolymerized aluminosilicate melts. Geochim. Cosmochim. Acta 64, 3725–3736. Withers A. C. and Behrens H. (1999) Temperature-induced changes in the NIR spectra of hydrous albitic and rhyolitic glasses between 300 and 100 K. Phys. Chem. Miner. 27, 119– 132. Zhang Y. (1994) Reaction kinetics, geospeedometry, and relaxation theory. Earth Planet. Sci. Lett. 122, 373–391. Zhang Y. (1999) H2O in rhyolitic glasses and melts: measurement, speciation, solubility, and diffusion. Rev. Geophys. 37, 493–516. Zhang Y. and Behrens H. (2000) H2O diffusion in rhyolitic melts and glasses. Chem. Geol. 169, 243–262. Zhang Y., Belcher R., Ihinger P. D., Wang L., Xu Z. and Newman S. (1997a) New calibration of infrared measurement of dissolved water in rhyolitic glasses. Geochim. Cosmochim. Acta 61, 3089–3100. Zhang Y., Jenkins J. and Xu Z. (1997b) Kinetics of the reaction H2O + O = 2OH in rhyolitic glasses upon cooling: geospeedometry and comparison with glass transition. Geochim. Cosmochim. Acta 61, 2167–2173. Zhang Y., Stolper E. M. and Ihinger P. D. (1995) Kinetics of the reaction H2O + O = 2OH in rhyolitic and albitic glasses: Preliminary results. Am. Mineral. 80, 593–612. Zhang Y., Stolper E. M. and Wasserburg G. J. (1991) Diffusion of water in the rhyolitic glasses. Geochim. Cosmochim. Acta 55, 441–456. Zhang Y. and Xu Z. (2007) A long-duration experiment on hydrous species geospeedometer and hydrous melt viscosity. Geochim. Cosmochim. Acta 71, 5226–5232. Zhang Y., Xu Z. and Behrens H. (2000) Hydrous species geospeedometer in rhyolite: improved calibration and applications. Geochim. Cosmochim. Acta 64, 3347– 3355. Zhang Y., Xu Z. and Liu Y. (2003) Viscosity of hydrous rhyolitic melts inferred from kinetic experiments, and a new viscosity model. Am. Mineral. 88, 1741–1752.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorHui, H.en
dc.contributor.authorZhang, Y.en
dc.contributor.authorXu, Z.en
dc.contributor.authorDel Gaudio, P.en
dc.contributor.authorBehrens, H.en
dc.contributor.departmentLunar and Planetary Institute, USRA-Houston, Houston (TX) USAen
dc.contributor.departmentDepartment of Geological Sciences, The University of Michigan, Ann Arbor (MI) USAen
dc.contributor.departmentDepartment of Geological Sciences, The University of Michigan, Ann Arbor (MI) USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentInstitut für Mineralogie, Universität Hannover, Hannover Germanyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptLunar and Planetary Institute, USRA-Houston, Houston (TX) USA-
crisitem.author.deptDepartment of Geological Sciences, The University of Michigan, Ann Arbor (MI) USA-
crisitem.author.deptDepartment of Geological Sciences, The University of Michigan, Ann Arbor (MI) USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptLiebniz Universitat Hannover-
crisitem.author.orcid0000-0002-0977-1237-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Hui.etal_GCAxxx_2009 (Pressure dependence of viscosity of rhyolitic melts).pdfArticle in press1.01 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

33
checked on Feb 10, 2021

Page view(s) 50

257
checked on Apr 17, 2024

Download(s)

27
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric