Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4997
DC FieldValueLanguage
dc.contributor.authorallBraitenberg, Carlaen
dc.contributor.authorallEbbing, Jörgen
dc.date.accessioned2009-03-30T12:42:34Zen
dc.date.available2009-03-30T12:42:34Zen
dc.date.issued2009en
dc.identifier.urihttp://hdl.handle.net/2122/4997en
dc.description.abstractThe recently released gravity potential field development derived from the Gravity Recovery and Climate Experiment satellite allows an unprecedented opportunity to use the gravity field to make global comparisons of structures of geological interest. The spatial resolution of the gravity field is sufficiently good to map large-scale or intracratonic and cratonic basins, as the areal extent of these basins is 0.5 × 106 km2 and greater. We present the gravity anomaly, Bouguer, geoid and terrain corrected geoid fields for a selection of nine large-scale basins and show that the satellite-derived field can be used to successfully identify distinctive structures of these basins, e.g., extinct rifts underlying the basins and generally the isostatic state. The studied basins are the Eastern Barents Sea, West Siberian, Tarim, Congo, Michigan, Amazon, Solim ˜ oes, Parnaiba and Paran`a basins. We complete the mapping of the gravity field with a description of the basins in terms of areal extension and depth, sedimentary age and presence and age of volcanism. Interpretation of the satellite gravity anomalies and considerations regarding the crustal thickness as known from seismic investigations, allows us to conclude that for the greater part of the basins there is evidence for high-density material in the lower crust and/or upper mantle. This density anomaly is, at least partly, compensating for the low-density sedimentary infill instead of the crustal thinning mechanism. For our selection of basins, crustal thickness variations and Moho topography cannot be considered as mechanisms of compensation of the sedimentary loading, which is a clear difference to well-defined rift basins.en
dc.language.isoEnglishen
dc.publisher.nameBlackwellen
dc.relation.ispartofGeophysical Prospectingen
dc.relation.ispartofseries2009en
dc.subjectGRACEen
dc.subjectBasinsen
dc.subjectgravityen
dc.subjectisostasyen
dc.subjectCratonic basinen
dc.subjectCongo Basinen
dc.subjectTarim Basinen
dc.subjectAmazon Basinen
dc.subjectEast Barents Sea Basinen
dc.subjectParana' basinen
dc.subjectOil maturationen
dc.subjectLIPen
dc.subjectBasaltic provinceen
dc.titleThe GRACE-satellite gravity and geoid fields in analysing large-scale,en
dc.typearticleen
dc.description.statusIn pressen
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber13en
dc.identifier.URLhttp://www2.units.it/~geodin/bib/GProsp09.pdfen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneousen
dc.identifier.doidoi: 10.1111/j.1365-2478.2009.00793.xen
dc.relation.referencesAllen M.B., Anderson L., Searle R.C. and Buslov M. 2006. Oblique rift geometry of the West Siberian Basin: tectonic setting for the Siberian flod basalts. Journal of the Geological Society, London 163, 901-904. Allen P.A. and Allen J.R. 2005. Basin analysis: Principles and Applications, 2nd edition., 549p., Blackwell Publishing, Oxford, ISBN-13: 978-0-632-05207-3. Almeida F.F.M., Hasui Y., De Brito Neves B.B. and Fuck R.A. 1981. Brazilian structural provinces : An introduction. Earth Science Reviews 17, 1-29. Almeida F.F.M., De Brito Neves B.B. and Dal Rè Carneiro C. 2000. The origin and evolution of the South American Platform. Earth Science Reviews 50, 77-111. An M. and Assumpção M. 2006. Crustal and upper mantle structure in the intracratonic Parana’ basin, SE Brazil, from surface wave dispersion using genetic algorithms. J. S. Am. Earth Sc. 21, 173-184. Artyushkov E.V. 2005. The formation mechanism of the Barents Basin, Russ. Geol. Geophys. 46(7), 700–713. Assumpção M., James D.E. and Snoke J.A. 2002. Crustal thickness in SE Brazilian shield by receiver function analysis: implications for isostatic compensation. J. Geophys. Res. 107 (B1), 2006. 10.1029/2001JB000422. Braitenberg C., Wang Y., Fang J. and Hsu H.T. 2003. Spatial Variations of flexure parameters over the Tibet-Quinghai Plateau. Earth Planet. Sci. Lett. 205, 211-224. Braitenberg C. and Ebbing J. 2009. New insights into the basement structure of the West Siberian Basin from forward and inverse modelling of Grace satellite gravity data. J. Geophys. Res., submitted. Chen Z.Q. and Shi G.R. 2003. Late Paleozoic depositional history of the Tarim basin, northwest China: an integration of biostratigraphic and lithostratigraphic constraints. AAPG Bulletin, 87, 1323-1354. Daly M.C., Lawrence S.R. Kimuna D. and Binga M. 1991. Late Paleozoic deformation in central Africa: a result of a distant collision? Nature 350, 605. Daly M.C., Lawrence S.R., Diemu-Tshiband K. and B. Matouana 1992. Tectonic evolution of the Cuvette Centrale, Zaire. J. Geol. Soc. London 149, 539-546. Ebbing J., Braitenberg C. and Wienecke S. 2007. Insights into the lithospheric structure and the tectonic setting of the Barents Sea region from isostatic considerations. Geophysical Journal International 171 (3), 1390–1403. Feng M., Assumpção M. and Van Der Lee S. 2004. Group-velocity tomography and lithospheric s-velocity structure of the south american continent. Phys. Earth Planet. Int. 147 (4), 315–331. doi:10.1016/j.pepi.2004.07.008. Forsberg R. 1984. A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling. Reports of the Department of Geodetic Science and Surveying, No. 355, The Ohio State University, Columbus, Ohio. Förste C., Schmidt R., Stubenvoll R., Flechtner F., Meyer U., König R., Neumayer H., Biancale R., Lemoine J.-M., Bruinsma S., Loyer S., Barthelmes F. and Esselborn S. 2008. The GeoForschungsZentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C, Journal of Geodesy, doi:10.1007/s00190-007-0183-8. Guo Z.-J., Yin A., Robinson A. and Jia C.-Z. 2005. Geochronology and geochemistry of deep-drill-core samples from the basement of the central Tarim basin. J. of Asian Earth Sci.. 25, 45–56. Hartley R.W. and Allen P.A. 1994. Interior cratonic basins of Africa: relation to continental break-up and role of mantle convection. Basin Res. 6, 95-113. Hartley R.W., Watts A.B. and Fairhead J.D. 1996. Isostasy of Africa. Earth Planet. Sci. Let., 137, 1-18. Haxby W.F., Turcotte D.L. and Bird J.M. 1976. Thermal and mechanical evolution of the Michigan Basin. Tectonophysics 36, 57-75. Jia D., Lu H., Cai D., Wu S., Shi Y. and Chen C. 1998. Structural features of northern Tarim basin: Implications for regional tectonics and petroleum traps. AAPG Bulletin 82, 1, 147-159. Leighton M.W. and Kolata D.R. 1990. Selected interior cratonic basins and their place in the scheme of global tectonics, Mem. Am. Ass. Petrol Geol. 51, 729-797. Levshin A.L., Schweitzer J., Weidle C., Shapiro N.M. and Ritzwoller M.H. 2007. Surface wave tomography of the Barents Sea and surrounding regions. Geophys. J. Int. 170, 441–459. Lithospheric Dynamic Atlas of China 1989. China Cartographic Publishing House, Beijing. McKenzie D. 1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters 40, 25-32. Milani E.J. 2004. Comentários sobre a origem e a evolução tectônica da bacia so Paraná. In: Geologia do continente Sud-Americano: evolução da obra de Fernando Flávio Marques Almeida, (edts. Mantesso-Neto V., Bartorelli A., Dal Ré Carneiro C., Bley de Brito-Neves B.), pp. 1-673. Beca Produções Culturais, São Paulo, Brasil. Milani E.J. and Thomaz Filho A. 2000. Sedimentary basins of South America. In: Tectonic evolution of South America (edts. Cordani U.G., Milani E.J., Thomaz Filho, A. and Campos D.A.), p.389-449. 31st International Geological Congress, Rio de Janeiro, Brasil. Milani E.J. and Ramos V.A. 1998. Orogenias paleozòicas no domìnio sul – ocidental do Gondwana e os ciclos de subsidència da Bacia do Paranà. Revista Brasileira de Geocièncias, 474-484. Molina E.C., Ussami N., Sà N.C., Blitzkow D. and Fo O.F.M. 1988. Deep Crustal Structure Under The Parana Basin (Brazil) From Gravity Study. In: The mesozoic flood volcanism of the Paranà basin: petrogenetic and geophysical aspects. (edts. E.M. Piccirillo and Adolpho José Melfi. IAG-University of Sao Paulo, 271-283. Nunn, J.A. 1994. Free thermal convection beneath intracratonic basins: thermal and subsidence effects. Basin Research 6, 115-130. Nunn J.A. and Aires J.R. 1988. Gravity anomalies and flexure of the lithosphere at the middle Amazon basin, Brazil. J. Geophys. Res. 93, 415-428. Nunn J.A. and Sleep N.H. 1984. Thermal contraction and flexure of intracratonal basins: a three-dimensional study of the Michigan basin. Geophys. J. R. Astr. Soc. 76, 587-635. O'Leary N., White N., Tull S. and Bashilov V. 2004. Evolution of the Timan–Pechora and South Barents Sea basins. Geol. Mag. 141 (2), 141–160. Pavlov Y.A 1995. On recognition of rift structures in the basement of the West Siberian plate. Geotectonics, English Translation (AGU) 29, no.3, 213-223. Perez-Gussinye M., Lowry A.R., Watts A.B. 2007. Effective elastic thickness of South America and its implications for intracontinental deformation, Geochemistry Geophysics Geosystems 8, Art. No. Q05009. Reichow M.K., Saunders A.D., White R.V., Al’Mukhamedov A.I., Medvedev A.Y. 2005. Geochemistry and petrogenesis of basalts from the West Siberian Basin: an extension of the Permo–Triassic Siberian Traps, Russia, Lithos, 79 425-452. Ritzmann O., Maercklin N., Faleide J.I., Bungum H., Mooney W.D. and Detweiler S.T., 2007. A three-dimensional geophysical model of the crust in the Barents Sea region: model construction and basement characterization. Geophys. J. Int. 170, 417–435. Sleep N.H. and Sloss L.L. 1978. A deep borehole in the Michigan Basin. J. Geophys. Res. 83, B12, 5815-5819. Sleep N.H. and Snell N.S. 1976. Thermal contraction and flexure of mid-continent and Atlantic marginal basins. Geophys. J. R. Astr. Soc. 45, 125-154. Sleep N.-H, Nunn J.-A. and Chou L. 1980. Platform basins. Annual Review of Earth and Planetary Sciences 8, 17-34. Sloss L.L. and Scherer W. 1975. Geometry of sedimentary basins: applications to the Devonian of North America and Europe, Geol. Soc. Am., Memoir 142, 71-88. Sobel E.R., Hilley G.E. and Strecker M.R. 2003. Formation of internally drained contractional basins by aridity-limited bedrock incision. J. Geophys. Res. 108, B7, 2344, doi:10.1029/2002JB001883, Tapley B.D., Bettadpur S., Ries J.C., Thompson P.F. and Watkins M.M. 2004. GRACE Measurements of Mass Variability in the Earth System, Science 305, 503, DOI: 10.1126/science.1099192, Tscherning C.C., Forsberg R. and Knudsen P. 1992. The GRAVSOFT package for geoid determination. Proc. 1. Continental Workshop on the Geoid in Europe, Prague, May 1992, pp. 327-334, Prague. Vyssotski A.V., Vyssotski V.N. and Nezhdanov A.A. 2006. Evolution of the West Siberian Basin. Marine and Petroleum Geol. 23, 93-126. Watts A.B. 2001. Isostasy and flexure of the lithosphere, Cambridge University Press, Cambridge, 2001, 458 pp. ISBN-13: 9780521006002. Wessel P., and Smith W. H. F. 1998. New, Improved Version of Generic Mapping Tools Released, EOS Trans., AGU 79 (47), p. 579. Yuzhu K. and Zhihong K. 1996. Tectonic evolution and oil and gas of Tarim basin. Journal of Southeast Asian Earth Sciences 13, 3-5, 317-325. Zhu T. and Brown L.R. 1986. Consortium for continental reflection profiling Michigan Surveys: reprocessing and results. J. Geophys. Res., 91, 11477-11495.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBraitenberg, Carlaen
dc.contributor.authorEbbing, Jörgen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.orcid0000-0001-7492-5338-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Bozza_di_Stampa_gpr_793.pdfMain Article Preview1.32 MBAdobe PDF
Show simple item record

Page view(s) 50

164
checked on Apr 20, 2024

Download(s)

37
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric