Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4990
DC FieldValueLanguage
dc.contributor.authorallBalasco, M.; Istituto di Metodologie per l’Analisi Ambientale, CNR, Tito Scalo (PZ), Italy,en
dc.contributor.authorallLapenna, V.; Istituto di Metodologie per l’Analisi Ambientale, CNR, Tito Scalo (PZ), Italy,en
dc.contributor.authorallRomano, G.; Istituto di Metodologie per l’Analisi Ambientale, CNR, Tito Scalo (PZ), Italy,en
dc.contributor.authorallSiniscalchi, A.; Dipartimento di Geologia e Geofisica, Università degli Studi di Bari, Italyen
dc.contributor.authorallTelesca, L.; Istituto di Metodologie per l’Analisi Ambientale, CNR, Tito Scalo (PZ), Italy,en
dc.date.accessioned2009-03-27T09:09:02Zen
dc.date.available2009-03-27T09:09:02Zen
dc.date.issued2008-02en
dc.identifier.urihttp://hdl.handle.net/2122/4990en
dc.description.abstractVariations detected in geophysical, especially electromagnetic, parameters in seismic active areas have been sometimes attributed to modifications of the stress field. Among the different geophysical methods, magnetotellurics (MT) could be one of the most effective because it allows us to explore down to seismogenic depths. Continuous MT recording could allow us to evaluate whether possible variations are significantly correlated with the seismic activity of investigated area. To assess the significance of such observations we must be able to say how well an apparent resistivity curve should be reproduced when measurements are repeated at a later time. To do this properly it is essential to know that the estimated error bars accurately represent the true uncertainties in comparing the transfer functions. In this work we will show the preliminary results obtained from the analysis of the data coming from the new MT monitoring network installed in Agri Valley. This analysis gives us the possibility: i) to better study the temporal stability of the signals, ii) to better discriminate the noise affecting the measures by remote reference estimation. The performed analysis disclosed a relatively low degree of noise in the investigated area, which is a promising condition for monitoring.en
dc.language.isoEnglishen
dc.relation.ispartofAnnals of Geophysicsen
dc.relation.ispartofseries1/51 (2008)en
dc.subjectmagnetotelluricen
dc.subjectremote referenceen
dc.subjectapparent resistivity curveen
dc.subjectearthquake precursorsen
dc.titleA new magnetotelluric monitoring network operating in Agri Valley (Southern Italy): study of stability of apparent resistivity estimatesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber265 - 273en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneousen
dc.relation.referencesBAHR, K. (1988): Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion, J. Geophys., 62, 119-127. BALASCO, M., G. COLANGELO, V. LAPENNA, M. LODDO, A. SINISCALCHI and L. TELESCA (2004a): Measuring apparent resistivity in a seismically active area of southern Italy, Phys. Chem. Earth, 29, 329-337. BALASCO, M., V. LAPENNA, A. SINISCALCHI and L. TELESCA (2004b): Stability analysis of apparent resistivity measurement in the seismically active area of Val d’Agri (Southern Italy), Nat. Haz. Earth Sys. Sci., 4, 1-7. BALASCO, M., V. LAPENNA, G. ROMANO, A. SINISCALCHI and L. TELESCA (2007): Extracting quantitative dynamics in Earth’s apparent resistivity time series by using the detrended fluctuation analysis, Physica A, 374, 380-388. CAGNIARD, L. (1953): Basic theory of the magnetotelluric method of geophysical prospecting, Geophysics, 18, 605. EGBERT, G.D. (1997): Robust multiple-station magnetotelluric data processing, Geophys J. Int., 130, 475-496. EGBERT, G.D. and J.R. BOOKER (1986): Robust estimation of geomagnetic transfer functions, Geophys. J. R. Astron. Soc., 87, 173-194. EISEL, M. and G.D. EGBERT (2001): On the stability of magnetotelluric transfer function estimates and the reliability of their variances, Geophys. J. Int., 144, 65-82. GAMBLE, T.D., W.M. GOUBAU and J. CLARKE (1979) Magnetotellurics with a remote reference, Geophysics, 44, 53-68. GARCIA, X. and A.G. JONES (2002): Extended decomposition of MT data in three-dimensional electromagnetics, Methods Geochem. Geophys., 35, 235-250. GIANO, I.G., L. MASCHIO, M.ALESSIO, L. FERRANTI, S. IMPROTA and M. SCHIATTARELLA (2000): Radiocarbon dating of active faulting in the Agri high valley, Southern Italy, J. Geodyn., 29, 371-386. HUANG, Q. and T. LIU (2006): Earthquakes and tide response of geoelectric potential field at the Niijima station, Chinese J. Geophys., 49, 1745-1754. KARAKELIAN, D., G.C. BEROZA, S.L. KLEMPERER and A.C. FRASER-SMITH (2002): Analysis of ultralow-frequency electromagnetic field measurements associated with the 1999 M 7.1 Hector Mine, California, earthquake sequence, Bull. Seismol. Soc. Am., 92 (4), 1513-1524. KAUFMAN, A. and G.V. KELLER (1981): The magnetotelluric sounding method, Methods Geochem. Geophys., 15, pp. 583. KELLER, G.V. and F.C. FRISCHKNECHT (1966): Electrical Methods in Geophysical Prospecting (Pergamon Press, New York). MERZER, M. and S.L. KLEMPLERER (1997): Modeling lowfrequency magnetic-field precursors to the Loma Prieta earthquake with a precursory increase in fault-zone conductivity, Pure Appl. Geophys., 150, 217-248. NAGAO, T.,Y. ENOMOTO, Y. FUJINAWA, M. HATA, M. HAYAKAWA, Q. HUANG, J. IZUTSU, Y. KUSHIDA, K. MAEDA, K. OIKE, S. UYEDA and T. YOSHINO (2002): Electromagnetic anomalies associated with 1995 Kobe earthquake, J. Geodyn., 33, 401-411. PARK, S.K., M.J.S. JOHNSTON, T.R. MADDEN, F.D. MORGAN and H.F. MORRISON (1993): Electromagnetic precursors to earthquakes in the ULF band; a review of observations and mechanism, Rev. Geophys., 31, 117-132. ZHAO, Y. and F. QIAN (1994): Geoelectric precursors to strong earthquakes in China, Tectonophysics, 233, 99-113en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorBalasco, M.en
dc.contributor.authorLapenna, V.en
dc.contributor.authorRomano, G.en
dc.contributor.authorSiniscalchi, A.en
dc.contributor.authorTelesca, L.en
dc.contributor.departmentIstituto di Metodologie per l’Analisi Ambientale, CNR, Tito Scalo (PZ), Italy,en
dc.contributor.departmentIstituto di Metodologie per l’Analisi Ambientale, CNR, Tito Scalo (PZ), Italy,en
dc.contributor.departmentIstituto di Metodologie per l’Analisi Ambientale, CNR, Tito Scalo (PZ), Italy,en
dc.contributor.departmentDipartimento di Geologia e Geofisica, Università degli Studi di Bari, Italyen
dc.contributor.departmentIstituto di Metodologie per l’Analisi Ambientale, CNR, Tito Scalo (PZ), Italy,en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto di Metodologie per l’Analisi Ambientale (IMAA, CNR), Tito Scalo (Pz), Italy-
crisitem.author.deptIstituto di Metodologie Avanzate di Analisi Ambientale, CNR, Tito Scalo (PZ), Italy-
crisitem.author.deptUniversità degli Studi di Bari-
crisitem.author.deptUniversità degli Studi di Bari-
crisitem.author.deptIstituto di Metodologie per l Analisi Ambientale (IMAA), CNR, Tito Scalo (PZ), Italy-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
20 Balasco.pdf2.2 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

227
checked on Apr 17, 2024

Download(s) 50

224
checked on Apr 17, 2024

Google ScholarTM

Check