Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4988
DC FieldValueLanguage
dc.contributor.authorallTamburriello, G.; DISGG, Università della Basilicata, Campus Macchia Romana, 85100 Potenza, Italyen
dc.contributor.authorallBalasco, M.; Istituto di Metodologie per l’Analisi Ambientale, CNR, Tito Scalo (PZ), Italyen
dc.contributor.authorallRizzo, E.; Istituto di Metodologie per l’Analisi Ambientale, CNR, Tito Scalo (PZ), Italyen
dc.contributor.authorallHarabaglia, P.; DISGG, Università della Basilicata, Campus Macchia Romana, 85100 Potenza, Italyen
dc.contributor.authorallLapenna, V.; Istituto di Metodologie per l’Analisi Ambientale, CNR, Tito Scalo (PZ), Italyen
dc.contributor.authorallSiniscalchi, A.; Università degli Studi di Bari, Italyen
dc.date.accessioned2009-03-26T15:15:03Zen
dc.date.available2009-03-26T15:15:03Zen
dc.date.issued2008-01en
dc.identifier.urihttp://hdl.handle.net/2122/4988en
dc.description.abstractGeophysical surveys have been carried out to characterize the stratigraphical and structural setting and to better understand the deep water circulation system in the Venosa area (Southern Italy) located in the frontal portion of the southern Appenninic Subduction. In this area there are some deep water wells from which a water conductivity of about 3 mS/cm and a temperature of about 35°C was measured. A deep geoelectrical tomography with dipole-dipole array has been carried out along a profile of 10000 m and an investigation depth of about 900 m. Furthermore a broad band magnetotelluric profile consisting of six stations was performed to infer the resistivity distribution up to some kilometres of depth. The MT profile was almost coincident with the geoelectrical outline. The applied methods allow us to obtain a mutual control and integrated interpretation of the data. The high resolution of the data was the key to reconstruct the structural asset of buried carbonatic horst whose top is located at about 600 m depth. The final results coming from data wells, geothermal analysis and geophysical data, highlighted a horst saturated with salted water and an anomalous local gradient of 60°C/km. The proposed mechanism is that of a mixing of fossil and fresh water circulation system.en
dc.language.isoEnglishen
dc.relation.ispartofAnnals of Geophysicsen
dc.relation.ispartofseries1/51 (2008)en
dc.subjectSouthern Apennineen
dc.subjectgeothermal zoneen
dc.subjectdeep electrical resistivity tomographyen
dc.subjectmagnetotelluric surveyen
dc.titleDeep electrical resistivity tomography and geothermal analysis of Bradano foredeep deposits in Venosa area (Southern Italy): preliminary resultsen
dc.typearticleen
dc.description.status203 - 212en
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneousen
dc.relation.referencesCAGNIARD, L. (1953): Basic theory of the magnetotelluric method of geophysical prospecting, Geophysics, 18, p. 605. CALVERT, A.J., M.A. FISHER and SHIP WORKING GROUP (2001). Imaging the Seattle fault zone with high resolution seismic tomography, Geophys. Res. Lett., 28 (12), 2237-2340. CAPUTO, R., S. PISCITELLI, A. OLIVETO, E. RIZZO and V. LAPENNA (2003): High-resolution resistivity tomographies in Active Tectonic studies. Examples from the Tyrnavos Basin, Greece, J. Geodin., 36, 19-35. COLELLA A., V. LAPENNA and E. RIZZO (2004). High-resolution imaging of the High Agri Valley basin (Southern Italy) with Electrical Resistivity Tomography, Tectonophysics, 386, 29-40. D’ARGENIO, B., T. PESCATORE and P. SCANDONE (1973): Schema geologico dell’Appennino Meridionale (Campania e Lucania), Accademia Nazionale dei Lincei, 182, 49-72. DOGLIONI, C., P. HARABAGLIA, G. MARTINELLI, F. MONGELLI and G. ZITO (1996): A geodynamic model of the Southern Apennines, Terra Nova, 8, 540-547 EGBERT, G.D. (1997) Robust multiple-station magnetotelluric data processing, Geophys J. Int., 130, 475-496. HOLE, J.A., R.D. CATCHINGS, K.C.ST. CLAIR, M.J. RYMER, D.A. OKAYA and B.J. CAREY (2001). Steep-dip seismic imaging of the shallow San Andreas fault near Parkfield, Science, 294, 1513-1515. INGHAM, M. (2005). High resolution electrical imaging of fault zones, Phys. Earth Planet. Int., 150, 93-105. KAUFMAN, A. and G.V. KELLER (1981): The magnetotelluric sounding method, Methods Geochem Geophys., 15, 583. LAPENNA, V., M. MACCHIATO, D. PATELLA, C. SATRIANO, C. SERIO and V. TRAMUTOLI (1994): Statistical analysis of non-stationary voltage recordings in geoelectrical prospecting, Geophys. Prospect., 42 (8), 917-952. LOKE, M.H. (2003): RES2Dinv software package by Geotomo Software for determining a 2D resistivity model for the investigated subsoil. MAGGIORE, M. (1996): Caratteristiche idrogeologiche e principali differenze idrochimiche delle falde sotterranee del Tavoliere di Puglia, Mem. Soc. Geol. It., 51, 669-684. MAGGIORE, M. and F. MONGELLI (1991): Hydrogeothermal model of round water supplì to San Nazario spring (Gargano, Southern Italy), Quad. Dip. Di Geogr., 13, 307-324. MAGGIORE, M. and P. PAGLIARULO (1999): Vulnerabilità and main sources of groundwater pollution in the Apulian region (Southern Italy), in 2nd Symposium «Protection of groundwater from pollution and seawater intrusion », Bari, 27 settembre-1 Ottobre. MENARDI NOGUERA, A. and G. REA (2000): Deep structure of the Campanian-Lucanian Arc (Southern Apennine, Italy), Tectonophysics, 324, 239-265 OLIVER, J. (1986): Fluids expelled tectonically from orogenic belts: their role in hydrocarbon migration and other geologic phenomena, Geology, 14, 99-102. PAGLIARULO, P. (1996): Migrazione di fluidi profondi nel substrato prepliocenico dell’Avanfossa appenninica (bacino pugliese e lucano), Mem. Soc. Geol. It., 51, 659-668. PIERI, P., L. SABATO and M. TROPEANO (1994): Evoluzione tettono-sedimentaria della Fossa Bradanica a sud dell’Ofanto nel Pleistocene, in Guida alle escursioni. Congr. Soc. Geol. It. Bari, Quaderni Bibl. Prov. Matera, 15, 35-54. PIERI, P., L. SABATO and M. TROPEANO (1996): Significato geodinamico dei caratteri deposizionali e strutturali della fossa bradanica nel Pleistocene, Mem. Soc. Geol. It., 51, 501-515. RICHETTI, G. (1980): Contributo alla conoscenza strutturale della Fossa Bradanica e delle Murge, Boll. Soc. Geol. It., 99, 421-430. RICHETTI, G. and F. MONGELLI (1980): Flessione del campo gravimetrico della micropiastra apula, Boll. Soc. Geol. It., 99, 431-436. RODI, W. and R.L. MACKIE (2001): Non linear conjugate gradient algorithm for 2D magnetotelluric inversion, Geophysics, 6 (1), 174-187. SELLA, M., C. TURCI and A. RIVA (1988): Sintesi geopetrolifera della fossa bradanica (avanfossa della Catena Appenninica meridionale), Mem. Soc. Geol. It., 41, 87- 107 STEEPLES, D.W. (2001): Engineering and environmental geophysics at the millenium, Geophysics, 66 (1), 31-35. STORZ, H., W. STORZ and F. JACOBS (2000) Electrical resistivity tomography to investigate geological structures of the earth’s upper crust, Geophys. Prospect., 48, 455- 471. SUZUKI, K., S. TODA, K. KUSUNOKY, Y. FUJIMITSU, T. MOGI and A. JOMORI (2000): Case studies of electrical and electromagnetic methods applied to mapping active faults beneath the tick quaternary, Eng. Geol., 56, 29-45. TROPEANO, M., M. MARINO and P. PIERI (1994): Evidenze di tettonica distensiva Plio-Pleistocenica al margine orientale della Fossa Bradanica - L’Horst di Zagarella, Quaternario, 7 (2), 597-696. UUSWORTH, M.J., G. EGBERT and J. BOOKER (1999): Highresolution electromagnetic imaging of the San Andreas Fault in Central California, J. Geophys. Res., 104, 1131-1150.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorTamburriello, G.en
dc.contributor.authorBalasco, M.en
dc.contributor.authorRizzo, E.en
dc.contributor.authorHarabaglia, P.en
dc.contributor.authorLapenna, V.en
dc.contributor.authorSiniscalchi, A.en
dc.contributor.departmentDISGG, Università della Basilicata, Campus Macchia Romana, 85100 Potenza, Italyen
dc.contributor.departmentIstituto di Metodologie per l’Analisi Ambientale, CNR, Tito Scalo (PZ), Italyen
dc.contributor.departmentIstituto di Metodologie per l’Analisi Ambientale, CNR, Tito Scalo (PZ), Italyen
dc.contributor.departmentDISGG, Università della Basilicata, Campus Macchia Romana, 85100 Potenza, Italyen
dc.contributor.departmentIstituto di Metodologie per l’Analisi Ambientale, CNR, Tito Scalo (PZ), Italyen
dc.contributor.departmentUniversità degli Studi di Bari, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDISGG, Università della Basilicata, Campus Macchia Romana, 85100 Potenza, Italy-
crisitem.author.deptIstituto di Metodologie per l’Analisi Ambientale (IMAA, CNR), Tito Scalo (Pz), Italy-
crisitem.author.deptIstituto di Metodologie per l' Analisi Ambientale, CNR, Tito (PZ), Italy-
crisitem.author.deptUniversità della Basilicata-
crisitem.author.deptIstituto di Metodologie Avanzate di Analisi Ambientale, CNR, Tito Scalo (PZ), Italy-
crisitem.author.deptUniversità degli Studi di Bari-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
15 Tamburiello.pdf3.9 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

254
checked on Apr 24, 2024

Download(s) 10

669
checked on Apr 24, 2024

Google ScholarTM

Check