Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4953
DC FieldValueLanguage
dc.contributor.authorallTrasatti, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallGiunchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallPiana Agostinetti, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2009-03-16T11:28:52Zen
dc.date.available2009-03-16T11:28:52Zen
dc.date.issued2008-02en
dc.identifier.urihttp://hdl.handle.net/2122/4953en
dc.description.abstractThe interpretation of geodetic data in volcanic areas is usually based on analytical deformation models. Although numerical finite element (FE) modelling allows realistic features such as topography and crustal heterogeneities to be included, the technique is not computationally convenient for solving inverse problems using classical methods. In this paper, we develop a general tool to perform inversions of geodetic data by means of 3-D FE models. The forward model is a library of numerical displacement solutions, where each entry of the library is the surface displacement due to a single stress component applied to an element of the grid. The final solution is aweighted combination of the six stress components applied to a single elementsource. The pre-computed forward models are implemented in a global search algorithm, followed by an appraisal of the sampled solutions. After providing extended testing, we apply the method to model the 1993–1997 inflation phase at Mt Etna, documented by GPS and EDM measurements.We consider four different forward libraries, computed in models characterized by homogeneous/heterogeneous medium and flat/topographic free surface. Our results suggest that the elastic heterogeneities of the medium can significantly alter the position of the inferred source, while the topography has minor effect.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwell, UKen
dc.relation.ispartofGeophys. J. Int.en
dc.relation.ispartofseries/172(2008)en
dc.relation.isversionofhttp://hdl.handle.net/2122/2813en
dc.subjectNumerical solutions;en
dc.subjectInverse theoryen
dc.subjectCrustal structure;en
dc.subjectMechanics, theory, and modelling;en
dc.subjectVolcano monitoringen
dc.titleNumerical inversion of deformation caused by pressure sources: application to Mount Etna (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber873-884en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1111/j.1365-246X.2007.03677.xen
dc.relation.referencesAki, K. & Richards, P.G., 2002. Quantitative Seismology, 2nd edn, 700 pp., University Science Books, Sausalito, CA. Beghein, C. & Trampert, J., 2004. Probability density functions for radial anisotropy from fundamental mode surface wave data and the Neighbourhood Algorithm, Geophys. J. Int., 157, 1163–1174, doi:10.1111/j.1365- 246X.2004.02235.x. Bonaccorso, A. & Patan`e, D., 2001. Shear response to an intrusive episode at Mt. Etna volcano (January 1998) inferred through seismic and tilt data, Tectonophysics, 334, 61–75. Bonaccorso, A., Cianetti, S., Giunchi, C., Trasatti, E., Bonafede, M. & Boschi, E., 2005. Analytical and 3D numerical modeling of Mt. Etna (Italy) volcano inflation, Geophys. J. Int., 163, 852–862, doi:10.1111/j.1365-246X.2005.027777.x. Borgia, A., Ferrari, L. & Pasquar`e, G., 1992. Importance of gravitational spreading in the tectonic and volcanic evolution of Mt. Etna, Nature, 357, 231–234. Cayol, V. & Cornet, F.H., 1998a. Effects of topography on the interpretation of the deformation field of prominent volcanoes—Application to Etna, Geophys. Res. Lett., 25, 1979–1982. Cayol, V. & Cornet, F.H., 1998b. Three-dimensional modelling of the 1983– 1984 eruption at Piton de la FournaiseVolcano,R´eunion Island, J. geophys. Res., 103, 18 025–18 037. Chiarabba, C., Amato, A., Boschi, E. & Barberi, F., 2000. Recent seismicity and tomographic modelling of the Mount Etna plumbing system, J. geophys. Res., 105, 10 923–10 938. Chiarabba, C., De Gori, P. & Patan`e, D., 2004. The Mt. Etna plumbing system: the contribution of seismic tomography, Mount Etna Volcano Laboratory, Vol. 143, p. 384, eds Bonaccorso, A., Calvari, S., Coltelli, M., Negro, C.D. & Falsaperla, S., American Geophysical Union Monography Series. Corsaro, R. & Pompilio, M., 2004. Buoyancy-controlled eruption at Mt. Etna, Terra Nova, 16, 16–22. Currenti, G., Del Negro, C. & Ganci, G., 2007. Modelling of ground deformation and gravity fields using finite element method: an application to Etna volcano, Geophys. J. Int., 169, 775–786, doi:10.1111/j.1365- 246X.2007.03380.x. Davis, P.M., 1986. Surface deformation due to inflation of an arbitrarily oriented triaxial ellipsoidal cavity in an elastic half-space, with referece to Kilauea volcano, Hawaii, J. Geophys. Res., 91, 7429–7438. De Gori, P., Chiarabba, C. & Patan`e, D., 2005. Qp structure of Mt. Etna: constraints for the physics of the plumbing system, J. geophys. Res., 110, doi:10.1029/2003JB002875. Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond., Ser. A, 241, 376–396. Fukushima, Y., Cayol, V. & Durand, P., 2005. Finding realistic dike models from the interferometric synthetic aperture radar data: the February 2000 eruption at Piton de la Fournaise, J. geophys. Res., 110, doi:10.1029/2004JB003268. Gomberg, J.S. & Ellis, M., 1993. 3D-DEF: a user’s manual (a three-dimensional, boundary element modeling program), Tech. Rep. OF 93-0547, U.S. Geological Survey. Lay,T.&Wallace,T.C., 1995. Modern global seismology, 521 pp., Academic press, San Diego, California. Lohman, R.B., Simons, M. & Savage, B., 2002. Location and mechanism of the Little Skull Mountain earthquake as constrained by satellite radar interferometry and seismic waveform modeling, J. geophys. Res., 107, doi:10.1029/2001JB000627. Lucente, F.P., Piana Agostinetti, N., Moro, M., Selvaggi, G. & Di Bona, M., 2005. Possible fault plane in a seismic gap area of the southern Apennines (Italy) revealed by receiver function analysis, J. geophys. Res., 110, doi:10.1029/2004JB003187. Lundgren, P., Berardino, P., Coltelli, M., Fornaro, G., Lanari, R., Puglisi, G., Santosti, E. & Tesauro, M., 2003. Coupled magma chamber inflation and sector collapse slip observed with synthetic aperure radar interferometry on Mt. Etna volcano, J. geophys. Res., 108, doi:10.1029/2001JB000657. Lundgren, P., Casu, F., Manzo, M., Pepe, A., Berardino, P., Sansosti, E. & Lanari, R., 2004. Gravity and magma induced spreading of Mt. Etna volcano revealed by satellite radar interferometry, Geophys. Res. Lett., 31, doi:10.1029/2003GL018736. Masterlark, T., 2007. Magma intrusion and deformation predictions: sensitivities to the Mogi assumptions, J. geophys. Res., 112, doi:10.1029/ 2006JB004860. Masterlark, T.&Lu, Z., 2004. Transient volcano deformation source imaged with interferome tric synthetic aperture radar: application to Seguam Island, Alaska, J. geophys. Res., 109, doi:10.1029/2003JB002568. Mogi, K., 1958. Relation between the eruptions of various volcanoes and deformations of the ground surfaces around them, Bull. Earth. Res. Inst., 36, 99–134. Mossop, A. & Segall, P., 1999. Volum strain within the Geiser geothermal field, J. geophys. Res., 104, 29 113–29 131. Obrizzo, F., Pingue, F., Troise, C. & De Natale, G., 2004. Bayesian inversion of 1994–98 vertical displacements at Mt. Etna; evidence for magma intrusion, Geophys. J. Int., 157, 935–946. Okada, Y., 1992. Internal deformation due to shear and tensile faults in a halfspace, Bull. seism. Soc. Am., 82, 1018–1040. Piana Agostinetti, N., Spada, G. & Cianetti, S., 2004. Mantle viscosity inference: a comparison between simulated annealing and neighbourhood algorithm inversion methods, Geophys. J. Int., 157, 890–900, doi:10.1111/j.1365-246X.2004.02237.x. Puglisi, G.&Bonforte, A., 2004. Dynamics of Mount Etna Volcano inferred from static and kinematic GPS measurements, J. geophys. Res., 109, B11 404, doi:10.1029/2003JB002878. Sambridge, M., 1999a. Geophysical inversion with a Neighborhood Algorithm—I. Searching a parameter space, Geophys. J. Int., 138, 479– 494. Sambridge, M., 1999b. Geophysical inversion with a Neighborhood Algorithm—II. Appraising the ensemble, Geophys. J. Int., 138, 727–746. Trasatti, E., Giunchi, C. & Bonafede, M., 2003. Effects of topography and rheological layering on ground deformation in volcanic regions, J. Volc. Geotherm. Res., 122, 89–110. Trasatti, E., Giunchi, C. & Bonafede, M., 2005. Structural and rheological constraints on source depth and overpressure estimates at the Campi Flegrei Caldera, Italy, J. Volc. Geotherm. Res., 144, 105–118. Vasco, D.W.,Wicks, C., Karasaki, K. & Marques, O., 2002. Geodetic imaging: reservoir monitoring using satellite interferometry, Geophys. J. Int., 149, 555–571. Williams, C.A. & Wadge, G., 1998. The effects of topography on magma deformation models: application to Mt. Etna and radar interferometry, Geophys. Res. Lett., 25, 1549–1552. Yang, X., Davis, P.M. & Dieterich, J.H., 1988. Deformation from inflation of a dipping finite prolate spheroid in an elastic halfspace as a model for volcanic stressing, J. geophys. Res., 93, 4249–4257. Yu, H.Y. & Sanday, S.C., 1991. Elastic field in joined semi-infinite solids with an inclusion, Proc. R. Soc. London, Ser. A, 434, 521–530.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorTrasatti, E.en
dc.contributor.authorGiunchi, C.en
dc.contributor.authorPiana Agostinetti, N.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0002-2983-045X-
crisitem.author.orcid0000-0002-0174-324X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
etna 2008.pdf679.77 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

34
checked on Feb 10, 2021

Page view(s) 50

343
checked on Mar 27, 2024

Download(s)

15
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric