Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4848
DC FieldValueLanguage
dc.contributor.authorallVassallo, M.; Dipartimento di Scienze Fisiche, Università di Napoli Federico II (RISSC-Lab) - Amra Scarlen
dc.contributor.authorallZollo, A.; Dipartimento di Scienze Fisiche, Università di Napoli Federico II (RISSC-Lab)en
dc.date.accessioned2008-12-16T10:16:19Zen
dc.date.available2008-12-16T10:16:19Zen
dc.date.issued2008-04en
dc.identifier.urihttp://hdl.handle.net/2122/4848en
dc.description.abstractWe propose a two-dimensional, non-linear method for the inversion of reflected/ converted traveltimes and waveform semblance designed to obtain the location and morphology of seismic reflectors in a lateral heterogeneous medium and in any source-to-receiver acquisition lay-out. This method uses a scheme of non-linear optimization for the determination of the interface parameters where the calculation of the traveltimes is carried out using a finite-difference solver of the Eikonal equation, assuming an a priori known background velocity model. For the search for the optimal interface model, we used a multiscale approach and the genetic algorithm global optimization technique. During the initial stages of inversion, we used the arrival times of the reflection phase to retrieve the interface model that is defined by a small number of parameters. In the successive steps, the inversion is based on the optimization of the semblance value determined along the calculated traveltime curves. Errors in the final model parameters and the criteria for the choice of the best-fit model are also estimated from the shape of the semblance function in the model parameter space. The method is tested and validated on a synthetic dataset that simulates the acquisition of reflection data in a complex volcanic structure. This study shows that the proposed inversion approach is a valid tool for geophysical investigations in complex geological environments, in order to obtain the morphology and positions of embedded discontinuities.en
dc.language.isoEnglishen
dc.publisher.nameBlackwell Publishingen
dc.relation.ispartofGeophysical Prospectingen
dc.relation.ispartofseries/56(2008)en
dc.subjectnon-linear methoden
dc.subjectreflected/ converted traveltimesen
dc.titleMorphology and depth of seismic reflectors from 2D non-linear inversion of reflected arrival times and waveforms. Part I: Application to synthetic data computed in a complex volcanic structureen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber527–540en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methodsen
dc.identifier.doi10.1111/j.1365-2478.2008.00694.xen
dc.relation.referencesAkaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 6, 716–723. Al-Yahya K. 1989. Velocity analysis by iterative profile migration. Geophysics 54, 718–729. Amand P. and Virieux J. 1995. Non linear inversion of synthetic seismic reflection data by simulated annealing. 60th SEG meeting, San Francisco, California, USA, Expanded Abstracts, 612–615. Boschetti F., Dentith M. C. and List R. D. 1996. Inversion of seismic refraction data using genetic algorithms. Geophysics 61, 1715–1727. Bunks C., Salick F.M., Zaleski S. and Chavent G. 1995. Multiscale seismic waveform inversion. Geophysics 60, 1457–1473. Farra V. and Madariaga R. 1988. Non-linear reflection tomography. Geophysical Journal 95, 135–147. Festa G. and Nielsen S. 2003. PML absorbing boundaries. Bulletin of the Seismic Society of America 93, 891–903. Goldberg D. 1989. Genetic Algorithms in Search, Optimisation and Machine Learning. Addison-Wesley Professional. Holland J. 1975. Adaptation in Natural and Aartificial Systems. The University of Michigan Press. Hurvich C.M. and Tsai C. 1989. Regression and time series model selection in small samples. Biometrika 76, 297–307. Improta L., Zollo A., Herrero A., Frattini R., Virieux J. and Dell’Aversana P. 2002. Seismic imaging of complex structures by non linear-traveltime inversion of dense wide-angle data: application to a thrust belt. Geophysical Journal International 151, 264– 278. Judenherc S. and Zollo A. 2004. The Bay of Naples (southern Italy): constraints on the volcanic structures inferred from a dense seismic survey. Journal of Geophysical Research 109, L07613. doi:10.1029/2004GL019432. Krey T. 1978. Seismic stripping helps unravel deep reflections. Geophysics 43, 899–911. Neidell N.S. and Taner M.T. 1971. Semblance and other coherency measures for multicannel data. Geophysics 36, 482–497. Nelder J.A. and Mead R. 1965. A simplex method for function minimization. Computer Journal 7, 308–313. Podvin P. and Lecomte I. 1991. Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophysical Journal International 105, 271–284. Pullammanappallil S.K. and Louie J.N. 1993. Inversion of seismic reflection traveltimes using a non linear optimization scheme. Geophysics 58, 1607–1620. Sambridge M. and Drijkoningen G. 1992. Genetic algoritms in seismic waveform inversion. Geophysical Journal International 109, 323– 342. Tarantola A. and Vallette B. 1982. Generalized non-linear inverse problems solved using the least squares criterion. Review of Geophysical and Space Physics 20, 219–232. Toldi J. 1989. Velocity analysis without picking. Geophysics 54, 191– 199. Van Trier J.A. 1990. Reflection tomography after depth migration: fields data results. 60th SEG meeting, San Francisco, California, USA, Expanded Abstract, 1279–1282. Whitley D. 1994. A Genetic Algorithm Tutorial. Samizdat Press. Williamson P.R. 1990. Tomographic inversion in reflection seismology. Geophysical Journal International 100, 255– 274. Yilmaz O. and Chambers R. 1984. Migration velocity analysis by wave-field extrapolation. Geophysics 49, 1664–1974. Zollo A., D’Auria L., De Matteis R., Herrero A., Virieux J. and Gasparini P. 2002. Bayesian estimation of 2-D P-velocity models from active seismic arrival time data: imaging of the shallow structure of Mt Vesuvius (Southern Italy). Geophysical Journal International 151, 566–582. Zollo A., Judenherc S., Auger E., Virieux J., Capuano R., Chiarabba C., De Franco R., Makris J., Michelini A. and Musacchio G. 2003. Evidence for the buried rim of Campi Flegrei caldera from 3-d active seismic imaging. Geophysical Research Letters 30. doi:10.1029/2003GL018173.en
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorVassallo, M.en
dc.contributor.authorZollo, A.en
dc.contributor.departmentDipartimento di Scienze Fisiche, Università di Napoli Federico II (RISSC-Lab) - Amra Scarlen
dc.contributor.departmentDipartimento di Scienze Fisiche, Università di Napoli Federico II (RISSC-Lab)en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-8552-6965-
crisitem.author.orcid0000-0002-8191-9566-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Vassallo2008.pdf13.12 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

3
checked on Feb 10, 2021

Page view(s) 50

191
checked on Apr 17, 2024

Download(s)

21
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric