Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4847
DC FieldValueLanguage
dc.contributor.authorallSatriano, C.; Dipartimento di Scienze Fisiche (RISSC-Lab), Università di Napoli Federico IIen
dc.contributor.authorallRowe, C.; Los Alamos National Laboratoryen
dc.contributor.authorallZollo, A.; Dipartimento di Scienze Fisiche (RISSC-Lab), Università di Napoli Federico IIen
dc.date.accessioned2008-12-16T10:14:34Zen
dc.date.available2008-12-16T10:14:34Zen
dc.date.issued2008-06en
dc.identifier.urihttp://hdl.handle.net/2122/4847en
dc.description.abstractThe ever-growing size of data sets for active and passive seismic imaging makes the availability of automatic procedures for rapid analysis more and more valuable. Such procedures are especially important for time-critical applications like emergency decisions or re-orienting of ongoing seismic surveys. In this paper a new, iterative scheme for 3D traveltime tomography is presented. The technique, based on a tool originally developed for earthquake data, uses cross-correlation to examine waveform similarity and to adjust arrival times on seismic sections. A preliminary set of reference arrival times is first corrected by the cross-correlation lag and then used to build an initial 3D tomographic velocity model through a standard inversion code; traveltimes calculated from this model are then taken as new reference arrivals and the process of pick adjustment is repeated. The result is a tomographic image, upgraded and refined at each iteration of the procedure. The test performed on the waveform data set recorded during the 2001 SERAPIS active seismic survey in the gulfs of Naples and Pozzuoli (Southern Italy) shows that the 3D iterative tomography scheme produces a velocity image of the structure of the Campi Flegrei caldera which is consistent with the results from previous studies, employing just a fraction of the time needed by a human analyst to identify first breaks.We believe that this technique can be effectively employed for rapid analysis of large data-sets within time-critical or time-dependent tasks and for automatic 4D tomographic investigations.en
dc.language.isoEnglishen
dc.publisher.nameBlackwell publishingen
dc.relation.ispartofGeophysical Prospectingen
dc.relation.ispartofseries/56(2008)en
dc.subjectIterative Tomographycen
dc.subjectAutomatic pickingen
dc.titleIterative tomographyc analysis based on automatic refined pickingen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber467–475en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.identifier.doi10.1111/j.1365-2478.2008.00700.xen
dc.relation.referencesAllen R. 1982. Automatic phase pickers: their present use and future prospects. Bulletin of the Seismological Society of America 72, S225–S242. Baer M. and Kradolfer U. 1987. An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America 77, 1437–1445. Benz H.M., Chouet B.A., Dawson P.B., Lahr J.C., Page R.A. and Hole J.A. 1996. Three-dimensional P and S wave velocity structure of Redoubt Volcano, Alaska. Journal of Geophysical Research 101, 8111–8128. Boschetti F., Dentith R. and List M. 1996. A fractal-based algorithm for detecting first arrivals on seismic traces. Geophysics 61, 1095– 1102. Dello Iacono D., Zollo A., Vassallo M., Vanorio T. and Judenherc S. 2008. Seismic images and rock properties of the very shallow structure of Campi Flegrei caldera (southern Italy). Bulletin of Volcanology (in review). Dodge D.A., Beroza G.C. and Ellsworth W.L. 1995. Foreshock sequence of the 1992 Landers, California earthquake and its implications for earthquake nucleation. Journal of Geophysical Research 100, 9865–9880. Fremont M.J. and Malone S.D. 1987. High precision relative locations of earthquakes at Mount St. Helens, Washington. Journal of Geophysical Research 92, 10223–10236. Gelchinsky B. 1983. Automatic picking of first arrivals and parametrization of traveltime curves. Geophysical Prospecting 31, 915–928. doi:10.1111/j.1365-2478.1983.tb01097.x. Got J.L., Fr´echet J. and Klein F.W. 1994. Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. Journal of Geophysical Research 99, 15375–15386. Judenherc S. and Zollo A. 2004. The Bay of Naples (southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey. Bulletin of Volcanology 109, B10312. Lay T. andWallace T.C. 1995. Modern Global Seismology. Academic Press. Molyneux J. and Schmitt D. 1999. First break timing: Arrival onset times by direct correlation. Geophysics 64, 1492–1501. doi:10.1190/1.1444653. Monteiller V., Got J.-L., Virieux J. and Okubo P. 2005. An efficient algorithm for double-difference tomography and location in heterogeneous media, with an application to Kilauea volcano. Journal of Geophysical Research 110, B12306. Moriya H., Niitsuma H. and Baria R. 2003. Multiplet-clustering analysis reveals structural details within the seismic cloud at the Soultz geothermal field, France. Bulletin of the Seismological Society of America 93, 1606–1620. Murat M.E. and Rudman A.J. 1992. Automated first arrival picking: a neural network approach. Geophysical Prospecting 40, 587–604. doi:10.1111/j.1365-2478.1992.tb00543.x. Patan`e D., Barberi G., Cocina O., DeGori P. and Chiarabba C. 2006. Time-resolved seismic tomography detects magma intrusions at Mount Etna. Science 313, 821–823. Polak E. 1971. Computational Methods in Optimization. Academic Press. Rowe C.A., Aster R.C., Borchers B. and Young C.J. 2002. An automatic, adaptive algorithm for refining phase picks in large seismic data sets. Bulletin of the Seismological Society of America 92, 1660– 1674. Rowe C.A.H., Thurber C. and White R.A. 2004. Dome growth behavior at Soufriere Hills Volcano, Montserrat, revealed by relocation of volcanic event swarms. Journal of Volcanology and Geothermal Research 134, 199–221. Shearer P.M. 1997. Improving local earthquake locations using the L1 norm and waveform cross correlation: application to the Whittier Narrows, California, aftershock sequence. Journal of Geophysical Research 102, 8269–8283. Sleeman R. and Van Eck T. 1999. Robust automatic P-phase picking: an on-line implementation of broadband seismogram recordings. Physics of the Earth and Planetary Interiors 113, 265–275. Thurber C.H. 1992. Hypocenter-velocity structure coupling in local earthquake tomography. Physics of the Earth and Planetary Interiors 75, 55–62. Waldhauser F. and Ellsworth W.L. 2000. A double-difference earthquake location algorithm: method and application to the northern Hayward Fault, California. Bulletin of the Seismological Society of America 90, 1353–1368. Yilmaz O¨ z. 2001. Seismic Data Analysis, 2nd edn SEG. Zhang H., Thurber C. and Rowe C. 2003. Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings. Bulletin of the Seismological Society of America 93, 1904–1912. Zhang H. and Thurber C.H. 2003. Double-difference tomography: The method and its application to the hayward fault, california. Bulletin of the Seismological Society of America 93, 1875– 1889. Zollo A., Judenherc S., Auger E. et al. 2003. Evidence for the buried rim of Campi Flegrei caldera from 3-D active seismic imaging. Geophysical Research Letters 30, SDE 10–1.en
dc.description.obiettivoSpecifico1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorSatriano, C.en
dc.contributor.authorRowe, C.en
dc.contributor.authorZollo, A.en
dc.contributor.departmentDipartimento di Scienze Fisiche (RISSC-Lab), Università di Napoli Federico IIen
dc.contributor.departmentLos Alamos National Laboratoryen
dc.contributor.departmentDipartimento di Scienze Fisiche (RISSC-Lab), Università di Napoli Federico IIen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversité de Paris-
crisitem.author.deptLos Alamos National Lahoratory, Los Alamos, NM-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-3039-2530-
crisitem.author.orcid0000-0002-8191-9566-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
GeoProsp_Satr_Zoll.pdf4.03 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

1
checked on Feb 10, 2021

Page view(s) 50

147
checked on Apr 24, 2024

Download(s)

22
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric