Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4839
DC FieldValueLanguage
dc.contributor.authorallBalcone-Boissard, H.; Institut de Physique du Globe de Paris, CNRS, Equipe Géologie des Systèmes Volcaniques, 4 pl. Jussieu, 75005 Paris, Franceen
dc.contributor.authorallBaker, D. R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallVillemant, B.; Institut de Physique du Globe de Paris, CNRS, Equipe Géologie des Systèmes Volcaniques, 4 pl. Jussieu, 75005 Paris, France; Université P.&M. Curie, Paris, Franceen
dc.contributor.authorallBoudon, G.; Institut de Physique du Globe de Paris, CNRS, Equipe Géologie des Systèmes Volcaniques, 4 pl. Jussieu, 75005 Paris, Franceen
dc.date.accessioned2008-12-16T07:38:38Zen
dc.date.available2008-12-16T07:38:38Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4839en
dc.description.abstractFluorine and chlorine diffusion were measured in two natural phonolitic melts, from Vesuvius (Italy) and from Laacher See (Germany), at 0.5 and 1.0 GPa, between 1250 and 1450 °C at anhydrous conditions and with about 2 and 5 wt.% of dissolvedwater. The two different startingmaterials allowus to investigate the alkali effect,Na vs. K, on halogen diffusion.One compositionwas a K-rich (~10wt.%) phonoliticmelt corresponding to thewhite pumice phase of the 79ADeruption of Vesuvius, and the other aNa-rich (~10 wt.%) phonoliticmelt corresponding tomost differentiated melt of the 12,000 BC eruption of Laacher See. The diffusion-couple technique in a piston cylinder was used for the experiments. Experiments were performed with only one halogen diffusing and with the simultaneous diffusion of a halogenmixture (F, Cl, Br) in order to evaluate the interactions between the halogens during diffusion. Diffusion coefficients for F range between 2×10−11m2/s at 1250 °C and 7×10−11m2/s at 1450 °C for the Na-rich melt and between 1×10−11 m2/s at 1250 °C and 8×10−11 m2/s at 1450 °C for the K-rich melt at anhydrous conditions. Diffusion coefficients for Cl range between 2×10−12 m2/s at 1250 °C and 1×10−11 m2/s at 1450 °C for theNa-richmelt and between 7×10−12m2/s at 1250 °C and 2×10−11m2/s at 1450 °C for the K-richmelt at anhydrous conditions. Fluorine diffusivity is higher than Cl in the Na-rich-phonolitic melt by one order of magnitude,whereas in the K-rich-phonoliticmelt F and Cl diffusivities are similar. The effect ofwater is significant for Cl in both Na-rich and K-rich melts: the addition of water enhances Cl diffusivity by up to one order of magnitude, butwater does not significantly affect F diffusion. F and Cl diffusivities always differ fromone another in the same phonoliticmelt composition. F diffusivities are similar in both compositions. Conversely, Cl diffusion depends upon the dominant alkali. These results evidence that halogen diffusivitymay represent a limiting factor for their degassing during rapid syneruptive decompression and vesiculation of H2O-rich-phonolitic melts. The contrasting volatile diffusivities of F and Cl in silicate melts duringmagma vesiculation may be a key, controlling factor of the composition of the vapour phase (bubbles) produced. Such diffusion controlled degassingmodelmay explain the absence of F and Cl degassing observed during the 79AD eruption of Vesuvius.en
dc.description.sponsorshipIPGP contribution: 2364; Geotop contribution: 2008-0029.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofChemical Geologyen
dc.subjectDiffusioen
dc.subjectHalogenesen
dc.titleF and Cl diffusion in phonolitic melts: Influence of the Na/K ratioen
dc.typearticleen
dc.description.statusIn pressen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanismen
dc.identifier.doi10.1016/j.chemgeo.2008.08.018en
dc.relation.referencesAiuppa, A., Federico, C., Giudice, G., Gurrieri, S., Paonita, A., Valenza, M., 2004. Plume chemistry provides insights into mechanisms of sulfur and halogen degassing in basaltic volcanoes. Earth Planet. Sci. Lett. 222, 469–483. Aiuppa, A., Federico, C., Franco, A., Giudice, G., Gurrieri, S., Inguaggiato, S., Liuzzo, M., McGonigle, A.J.S., Valenza, M., 2005. Emission of bromine and iodine from Mount Etna volcano. Geochem. Geophys. Geosystem 6. Alletti, M., Baker, D.R., Freda, C., 2007. Halogen diffusion in a basaltic melt. Geochim. Cosmochim. Acta 71, 3570–3580. Altemose, V.O., 1973. Effect of alkali oxides on the diffusion of helium in a simple borosilicate glass. J. Am. Ceram. Soc. 56 (1), 1–4. Bai, T.B., Koster van Groos, A.F., 1994. Diffusion of chlorine in granitic melts. Geochim. Cosmochim. Acta 58, 113–123. Baker, D.R., 2004. Piston-cylinder calibration at 400 to 500 MPa: a comparison of using water solubility in albite melt and NaCl melting. Am. Mineral. 89, 1553–1556. Balcone-Boissard, H., Villemant, B., Boudon, G., Michel, A., 2008. Non-volatile vs. volatile behaviours of halogens during the AD 79 plinian eruption of Mt. Vesuvius, Italy. Earth Planet. Sci. Lett. 269 (1–2), 66–79. Borisov, A., Lahaye, Y., Palme, H., 2006. The effect of sodium on the solubilities of metals in silicate melts. Am. Mineral. 91 (5–6), 762–771. Chevychelov, V.U., Botcharnikov, R.E., Holtz, F., 2008. Partitioning of Cl and F between fluid and hydrous phonolitic melt of Mt. Vesuvius at ~850–1000 °C and 200 MPa. Chem. Geol. doi:10.1016/j.chemgeo.2008.06.025. Cioni, R., 2000. Volatile content and degassing processes in the AD 79 magma chamber at Vesuvius (Italy). Contrib. Mineral. Petrol. 140, 40–54. Clocchiatti, R., 1975. Les inclusions vitreuses des cristaux de quartz. Etude thermooptique et chimique. Applications géologiques. Mém. Soc. Géol. Fr. 122 96 pp. Crank, J., 1975. The Mathematics of Diffusion. Clarendon-Oxford, London. Day, D.E., 1976. Mixed alkali glasses — their properties and uses. J. Non-Cryst. Solids 21, 343–372. Devine, J.D., Gardner, J.E., 1995. Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am. Mineral. 80, 319–328. Di Muro, A., Villemant, B., Montagnac, G., Scaillet, B., Reynard, B., 2006. Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal microRaman spectrometry. Geochim. Cosmochim. Acta 70, 2868–2884. Dingwell, D.B., Scarfe, C.M., 1984. Chemical diffusion of fluorine in jadeite melt at high pressure. Geochim. Cosmochim. Acta 48, 2517–2525. Dingwell, D.B., Scarfe, C.M., 1985. Chemical diffusion of fluorine in melts in the system Na2O–Al2O3–SiO2. Earth Planet. Sci. Lett. 73, 377–384. Duffell, H.J., Oppenheimer, C., Pyle, D.M., Galle, B., McGonigle, A.J.S., Burton, M.R., 2003. Changes in gas composition prior to a minor explosive eruption at Masaya volcano, Nicaragua. J. Volcanol. Geotherm. Res. 126 (3–4), 327–339. Freda, C., Baker, D.R., Romano, C., Scarlato, P., 2003. Water Diffusion in Natural Potassic Melts. Special Publications, vol. 213. Geological society, London, pp. 53–62. Gardner, J.E., Burgisser, A., Hort, M., Rutherford, M., 2006a. Experimental and model constraints on degassing of magma during ascent and eruption. In: Siebe, C., Macias, J.L., Aguirre-Diaz, G.J. (Eds.), Neogene–Quaternary Continental Margin Volcanism: A Perspective from Mexico. Penrose Conf. Series, vol. 402. Geol. Soc. Amer. Spec. Paper, pp. 99–113. Gardner, J.E., Burgisser, A., Hort, M., Rutherford, M., 2006b. Experimental and model constraints on degassing of magma during ascent and eruption. Geol. Soc. Amer. Bull. 402, 99–114. Gerlach, T.M., 2004. Volcanic sources of tropospheric ozone-depleting trace gases. Geochem. Geophys. Geosyst. 5, Q09007. Giordano, D., Romano, C., Papale, P., Dingwell, D.B., 2004. The viscosity of trachytes, and comparison with basalts, phonolites, and rhyolites. Chem. Geol. 213, 49–61. Gurioli, L., Houghton, B.F., Cashman, K.V., Cioni, R., 2005. Complex changes in eruption dynamics during the 79 AD eruption of Vesuvius. Bull. Volcanol. 67, 144–159. Henderson, P., Nolan, J., Cunningham, G.C., Lowry, R.K., 1985. Structural controls and mechanisms of diffusion in natural silicatemelts. Contrib.Mineral. Petrol. 89, 263–272. Hepburn, R.W., Tomozawa, M., 2001. Diffusion of water in silica glasses containing different amounts of chlorine. J. Non-Cryst. Solids 281, 162–170. Hess, K.U., Dingwell, D.B., Webb, S.L., 1995. The influence of excess alkalis on the viscosity of a haplogranitic melt. Am. Mineral. 80, 297–304. Kiczenski, T.J., Stebbins, J.F., 2006. The effect of fictive temperature on the structural environment offluorine in silicate and aluminosilicate glasses. J.Am. Ceram. Soc. 89 (1), 57–64. Kilinc, I.A., Burnham, C.W., 1972. Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars. Econ. Geol. 67 (231–235). Kravchuk, I.F., Keppler, H., 1994. Distribution of chloride between aqueous fluids and felsic melts at 2 kbar and 800 °C. Eur. J. Mineral. 6, 913–923. Larsen, J.L., 2008. Heterogeneous bubble nucleation and disequilibrium H2O exsolution in Vesuvius K-phonolite melts. J. Volcanol. Geotherm. Res. 175 (3), 278–288. Liu, Y., Nekvasil, H., 2002. Si–F bonding in aluminosilicate glasses: inferences from ab initio NMR calculations. Am. Mineral. 87, 339–346. Lux, G., 1987. The behavior of noble gases in silicate liquids: solution, diffusion, bubbles and surface effects, with applications to natural samples. Geochim. Cosmochim. Acta 51, 1549–1560. Maass, P., Peibst, R., 2006. Ion diffusion and mechanical losses in mixed alkali glasses. J. Non-Cryst. Solids 352, 5178–5187. Maass, P., Bunde, A., Ingram, M.D., 1992. Ion transport anomalies in glasses. Phys. Rev. Lett. 68, 3064–3067. Marziano, G.I., Schmidt, B.C., Dolfi, D., 2007. Equilibrium and disequilibrium degassing of a phonolitic melt (Vesuvius AD 79 “white pumice”) simulated by decompression experiments. J. Volcanol. Geotherm. Res. 161, 151–164. Morizet,Y.,Brooker,R.A.,Kohn, S.C., 2002. CO2 in haplo-phonolitemelt: solubility, speciation and carbonate complexation. Geochim. Cosmochim. Acta 66 (10), 1809–1820. Mysen, B.O., Richet, P., 2005. Silicate Glasses and Melts. Developments in Geochemistry, vol. 10. Elsevier. Mysen, B.O., Cody, G.D., Smith, A., 2004. Solubility mechanisms of fluorine in peralkaline and meta-aluminous silicate glasses and in melts to magmatic temperatures. Geochim. Cosmochim. Acta 68 (12), 2745–2769. Pichavant, M., Holtz, F., McMillan, P.F., 1992. Phase relations and compositional dependence of H2O solubility in quartz–feldspar melts. Chem. Geol. 96, 303–319. Rabinovich, E.M., 1983. On the structural role of fluorine in silicate glasses. Phys. Chem. Glasses 24, 54–56. Sandland, T.O., Du, L., Stebbins, J.F., Webster, J.D., 2004. Structure of Cl-containing silicate and aluminosilicate glasses: a 35Cl MAS-NMR study. Geochim. Cosmochim. Acta 68 (24), 5059–5069. Schaller, T., Dingwell, D.B., Keppler, H., Knöller,W., Merwin, L., Sebald, A., 1992. Fluorine in silicate glasses: a multinuclear nuclear magnetic resonance study. Geochim. Cosmochim. Acta 56 (2), 701–707. Shinohara, H., Iiyama, J.T., Matsuo, S., 1989. Partition of chlorine compounds between silicate melt and hydrothermal solutions. Geochim. Cosmochim. Acta 53, 2617–2630. Skibsted, J., Andersen, M.D., Jensen, O., Jakobsen, H., 2001. High-field 35Cl NMR investigation of chloride ions in inorganic solids: a variable-temperature 27Al and 35Cl MAS NMR study of the phase transition in Friedel's salt (Ca2Al(OH)6Cl·2H2O. 43rd Rocky Mountain Conference of Analytical Chemistry, Abstracts. American Chemical Society, p. 120. Smith, V.G., Tiller,W.A., Rutter, J.W.,1955. A mathematical analysis of solute redistribution during solidification. Can. J. Phys. 33, 723–744. Swenson, J., Adams, S., 2003. Mixed alkali effect in glasses. Phys. Rev. Lett. 90 (15). Symonds, R.B., Rose, W.I., Reed, M.H., 1988. Contribution of Cl- and F-bearing gases to the atmosphere by volcanoes. Nature 334 (n° 6181), 415–418. Tomozawa, M., 1998. The mixed alkali effect and thermodynamic state of glasses. Solid State Ionics 105, 249–255. Villemant, B., Boudon, G., 1999. H2O and halogen (F, Cl, Br) behaviour during shallow magma degassing processes. Earth Planet. Sci. Lett. 168, 271–286. Villemant, B., Boudon, G., Nougrigat, S., Poteaux, S., Michel, A., 2003. Water and halogens in volcanic clasts: tracers of degassing processes during plinian and dome-building eruptions. Geol. Soc. London, Spec. Publ. 213, 63–79. Watson, E.B., 1991. Diffusion of dissolved CO2 and Cl in hydrous silicic to intermediate magmas. Geochim. Cosmochim. Acta 55, 1897–1902. Whittington, A., Richet, P., Linard, Y., Holtz, F., 2001. The viscosity of hydrous phonolites and trachytes. Chem. Geol. 174, 209–223. Yamamoto, K., Nakanishi, T., Kasahara, H., Abe, K., 1983. Raman scattering of SiF4 molecules in amorphous fluorinated silicon. J. Non-Cryst. Solids 59 & 60 (213–216). Zeng, Q., Stebbins, J.F., 2000. Fluoride sites in aluminosilicate glasses: high-resolution 19F NMR results. Am. Mineral. 85, 863–867.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBalcone-Boissard, H.en
dc.contributor.authorBaker, D. R.en
dc.contributor.authorVillemant, B.en
dc.contributor.authorBoudon, G.en
dc.contributor.departmentInstitut de Physique du Globe de Paris, CNRS, Equipe Géologie des Systèmes Volcaniques, 4 pl. Jussieu, 75005 Paris, Franceen
dc.contributor.departmentInstitut de Physique du Globe de Paris, CNRS, Equipe Géologie des Systèmes Volcaniques, 4 pl. Jussieu, 75005 Paris, France; Université P.&M. Curie, Paris, Franceen
dc.contributor.departmentInstitut de Physique du Globe de Paris, CNRS, Equipe Géologie des Systèmes Volcaniques, 4 pl. Jussieu, 75005 Paris, Franceen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptiSTeP, UMR 7193, Université P. & M. Curie, 4 pl. Jussieu, 75252 Paris, France-
crisitem.author.deptiSTeP, UMR 7193, Université P. & M. Curie, 4 pl. Jussieu, 75252 Paris,-
crisitem.author.deptInstitut de Physique du Globe de Paris, CNRS, Equipe Géologie des Systèmes Volcaniques, 4 pl. Jussieu, 75005 Paris, France-
crisitem.author.orcid0000-0003-1426-1159-
crisitem.author.orcid0000-0002-6543-3283-
crisitem.author.orcid0000-0003-2907-6685-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
inePublication2008_CHEMGE_15499.pdfarticle574.51 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

26
checked on Feb 10, 2021

Page view(s)

141
checked on Apr 17, 2024

Download(s)

27
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric