Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4829
DC FieldValueLanguage
dc.contributor.authorallCocco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallTinti, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2008-12-15T22:26:27Zen
dc.date.available2008-12-15T22:26:27Zen
dc.date.issued2008-06-26en
dc.identifier.urihttp://hdl.handle.net/2122/4829en
dc.description.abstractWe attempt to reconcile current understanding of the earthquake energy balance with recent estimates of fracture energy from seismological investigations and surface energy from geological observations. The complex structure of real fault zones suggests that earthquakes in such fault structures are dominated by scale-dependent processes.We present a model for an inelastic fault zone of finite thickness embedded in an elastic crust represented at a macroscopic scale by a mathematical plane of zero thickness. The constitutive properties of the fault zone are governed by physical processes controlling gouge and damage evolution at meso- and micro-scale. However, in order to model and interpret seismological observations, we represent dynamic fault weakening at the macroscopic scale in terms of traction evolution as a function of slip and other internal variables defining a phenomenological friction or contact law on the virtual mathematical plane. This contact law is designed to capture the main features of dynamic fault weakening during earthquake rupture. In this study we assume that total shear traction is friction and corresponds to shear resistance of the whole fault zone.We show that seismological observations, depending on finite and limited wavelength and frequency bandwidth, can only provide an estimate of breakdown stress drop and breakdown work (a more general definition of seismological fracture energy) representing a lower bound of the total intrinsic power of dissipation on the fault zone. We emphasize that geological estimates of surface energy can be compared with seismological estimates of breakdown work only if they are representative of the same macroscopic scale. In this case, it emerges that, contrary to surface energy, seismological breakdown work represents a non-negligible contribution to the earthquake energy budget.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries1/273(2008)en
dc.subjectearthquake mechanicsen
dc.subjectdynamic fault weakeningen
dc.subjectfracture energyen
dc.subjectfault frictionen
dc.subjectearthquake energy budgeten
dc.titleScale dependence in the dynamics of earthquake propagation: Evidence from seismological and geological observationsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber123-131en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.identifier.doi10.1016/j.epsl.2008.06.025en
dc.relation.referencesAbercrombie, R.E., Rice, J.R., 2005. Can observations of earthquake scaling constrain slip weakening? Geophys. J. Int. 162, 406–424. Aki, K., 1996. Scale dependence in earthquake phenomenon and its relevance to earthquake prediction. Proc. Natl. Acad. Sci. U. S. A. 93, 3740–3747. Andrews, D.J., 1976a. Rupture propagation with finite stress in antiplane strain. J. Geophys. Res. 81 (20), 3575–3582. Andrews, D.J., 1976b. Rupture velocity of plane strain shear cracks. J. Geophys. Res. 81 (32), 5679–5687. Andrews, D.J., 2005. Rupture dynamics with energy loss outside the slip zone. J. Geophys. Res. 110, B01307. doi:10.1029/2004JB003191. Asano, K., Iwata, T., 2006. Source process and near-source ground motions of the 2005 West Off Fukuoka Prefecture earthquake. Earth Planets Space 58, 93–98. Asano, K., Iwata, T., Irikura, K., 2005. Estimation of source rupture process and strong ground motion simulation of the 2002 Denali, Alaska, Earthquake. Bull. Seismol. Soc. Am. 95 (5), 1701–1715. Beeler, N.M., 2006. Inferring earthquake source properties from laboratory observations and the scope of lab contributions to source physics. Earthquakes: Radiated Energy and the Physics of Faulting. Geophysical Monograph Series, vol. 170. American Geophysical Union. doi:10.1029/170GM12. Beeler, N.M., Tullis, T.E., Weeks, J.D., 1994. The roles of time and displacement in the evolution effect in rock friction. Geophys. Res. Lett. 21 (18), 1987–1990. Beeler, N.M., Tullis, T.E., Blanpied, M.L., Weeks, J.D., 2008. Frictional behavior of large displacement experimental faults, J. Geophys. Res., 101 (B4): 8697–8715. Bizzarri, A., Cocco, M., 2003. Slip-weakening behavior during the propagation of dynamic ruptures obeying to rate- and state-dependent friction laws. J. Geophys. Res. 108 (B8), 2373. doi:10.1029/2002JB002198 ESE 3-1-ESE 3-21. Bizzarri, A., Cocco, M., 2006a. A thermal pressurization model for the spontaneous dynamic rupture propagation on a 3-D fault: Part I — methodological approach. J. Geophys. Res. 111, B05303. doi:10.1029/2005JB003862. Bizzarri, A., Cocco, M., 2006b. A thermal pressurization model for the spontaneous dynamic rupture propagation on a 3-D fault: Part II — traction evolution and dynamic parameters. J. Geophys. Res. 111, B05304. doi:10.1029/2005JB003864. Chester, F.M., Evans, J.P., Biegel, R.L.,1993. Internal structure and weakening mechanisms of the San Andreas fault. J. Geophys. Res. 98, 771–786. Chester, J.S., Chester, F.M., Kronenberg,A.K., 2005. Fracture surface energyof the Punchbowl fault, San Andreas system. Nature 437, 133–136. doi:10.1038/nature03942. Choy, G.L., McGarr, A., Kirby, S.H., Boatwright, J., 2006. An overview of global variability in radiated energy and apparent stress. Earthquakes: Radiated Energy and the Physics of Faulting. Geophysical Monograph Series, vol. 170. American Geophysical Union. doi:10.1029/170GM01. Cocco, M., Spudich, P., Tinti, E., 2006. On the mechanical work absorbed on faults during earthquake ruptures. Earthquakes: Radiated Energy and the Physics of Faulting. Geophysical Monograph Series, vol. 170. American Geophysical Union. doi:10.1029/ 170GM24. Dieterich, J.H., 1979. Modeling of rock friction - 1. Experimental results and constitutive equations. J. Geophys. Res. 84 (B5), 2161–2168. Dor, O., Ben-Zion, Y., Rockwell, T., Brune, J., 2006. Pulverized rocks in the Mojave section of the San Andreas Fault zone. Earth Planet. Sci. Lett. 245, 642–654. Freund, L.B., 1979. The mechanics of dynamic shear crack propagation. J. Geophys. Res. 84, 2199–2209. Gu, Y.,Wong, T.-F.,1991. Effects of loading velocity, stiffness, and inertia on the dynamics of a single degree of freedom spring–slider system. J. Geophys. Res. 96, 21677–21691. Ida, Y., 1972. Cohesive force across the tip of a longitudinal-shear crack and Griffith's specific surface energy. J. Geophys. Res. 77, 3796–3805. Ide, S., 2003. Fracture surface energy of natural earthquakes from the viewpoint of seismic observations. Bull. Earthq. Res. Inst. Univ. Tokyo 78, 59–65. Irwin, G.R., 1960. Fracture mechanics. Structural Mechanics, Proc. 1st Symposium on Naval Structural Mech., pp. 557–591. Ji, C., Wald, D.J., Helmberger, D.V., 2002. Source description of the 1999 Hector Mine, California, earthquake, part II: complexity of slip history. Bull. Seimol. Soc. Am. 92 (4), 1208–1226. Kanamori, H., Heaton, T.H., 2000. Microscopic and macroscopic physics of earthquakes. In: Rundle, J., Turcotte, D.L., Klein, W. (Eds.), Geocomplexity and the Physics of Earthquakes. . Geophysical Research Monograph Series, vol. 120. AGU,Washington, pp. 147–163. Kostrov, B.V., 1974. Self-similar problems of propagation of shear cracks. J. Appl. Math. Mech. 28, 1077–1087. Kostrov, B.V., Das, S., 1988. Principles of Earthquake Source Mechanics. Cambridge University Press. Liu, P., Custodio, S., Archuleta, R.J., 2006. Kinematic inversion of the 2004 Mw 6.0 Parkfield earthquake including and approximation to site effects. Bull. Seimol. Soc. Am. 1–37. Li, V.C., 1987. Mechanics of shear rupture applied to earthquake zones. Fracture Mechanics of Rock. Academic Press, London, pp. 351–428. Lockner, D.A., Okubo, P.G., 1983. Measurements of frictional heating in granite. J. Geophys. Res. 88, 4313–4320. Mai, P.M., Somerville, P., Pitarka, A., Dalguer, L., Song, S., Beroza, G., Miyake, H., Irikura, K., 2006. On scaling of fracture energy and stress drop in dynamic rupture models: consequences for near-source ground-motions. Earthquakes: Radiated Energy and the Physics of Faulting. . Geophysical Monograph Series, vol. 170. American Geophysical Union. doi:10.1029/170GM28. Mair, K.,Marone, C., 2000. Shear heating in granular layers. Pure Appl. Geophys. 157 (11–12), 1847–1866. Matsumoto, H., Yamanaka, C., Ikeya, M., 2001. ESR analysis of the Nojima fault gouge, Japan, from the DPRI 500 m borehole. The Island Arc 10, 479–485. Ohnaka, M., 1996. Nonuniformity of the constitutive law parameters for shear rupture and quasistatic nucleation to dynamic rupture: a physical model of earthquake generation processes. Proc. Natl. Acad. Sci. U. S. A. 93, 3795–3802. Ohnaka, M., 2003. Constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture. J. Geophys. Res. 108, 2080. doi:10.1029/2002JB000123. Olgaard, D.L., Brace, W.F., 1983. The microstructure of gouge from a mining- induced seismic shear zone. Int. J. Rock Mech. Min. Sci. 20, 11–19. Palmer, A.C., Rice, J.R., 1973. The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. R. Soc. Lond. Ser. A 332, 527–548. Piatanesi, A., Tinti, E., Cocco, M., Fukuyama, E., 2004. The dependence of traction evolution on the earthquake source time function adopted in kinematic rupture models. Geophys. Res. Lett. 31. doi:10.1029/2003GL019225. Pittarello, L., Di Toro, G., Bizzarri, A., Pennacchioni, G., Hadizadeh, J., Cocco, M., 2008. Energy partitioning during seismic slip in pseudotachylyte-bearing faults (Gole Larghe Fault, Adamello, Italy). Earth Planet. Sci. Lett. 269, 131–139. Rice, J.R., 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386. Rice, J.R., and Cocco, M., 2006, Seismic fault rheology and earthquake dynamics, Dahlem Workshop on The Dynamics of Fault Zones, edited by M. R. Handy, MIT Press, Cambridge, Mass. Rice, J.R., Sammis, C.G., Parsons, R., 2005. Off-fault secondary failure induced by a dynamic slip pulse. Bull. Seismol. Soc. Am. 95, 109–134. doi:10.1785/0120030166. Rudnicki, J.W., Freund, L.B., 1981. On energy radiation from seismic sources. Seismol. Soc. Am. Bull. 71 (3), 583–595. Sibson, R.H., 2003. Thickness of seismic slip zone. Seismol. Soc. Am. Bull. 93 (3), 1169–1178. Sisk, M., Stillings, M., Rockwell, T., Girty, G., Dor, O., Ben Zion, Y., 2006. Pulverized rock along faults of the San Andreas system in southern California. Proc. and Abstracts, v.XVI, 2006 Southern California Earthquake Center (SCEC) Annual Meeting Set. Palm Springs, CA. Spagnuolo, E., 2006, Evoluzione della trazione dinamica sulla faglia durante I forti terremoti, Thesi di Laurea in Geofisica, Univ. degli Studi di Roma “La Sapienza.” Tinti, E., Spudich, P., Cocco, M., 2005. Earthquake fracture energy inferred from kinematic rupture models on extended faults. J. Geophys. Res. 110, B12303. doi:10.1029/ 2005JB003644. Tinti, E., Spudich, P., Cocco, M., 2008. Correction to ‘‘Earthquake fracture energy inferred from kinematic rupture models on extended faults’’. J. Geophys. Res. 113, B07301. doi:10.1029/2008JB005829. Wilson, B., Dewers, T., Reches, Z., Brune, J., 2005. Particle size and energetics of gouge from earthquake rupture zones. Nature 434, 749–752. Yoshioka, N., 1996. Fracture energy and the variation of gouge and surface roughness during frictional sliding of rocks. J. Phys. Earth 34, 335–355.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorCocco, M.en
dc.contributor.authorTinti, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-6798-4225-
crisitem.author.orcid0000-0002-6942-3592-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
cocco_tinti_EPSL_afterproof.pdfManuscript latest version1.09 MBAdobe PDFView/Open
cocco_tinti_2008.pdfmain article455.35 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

31
checked on Feb 10, 2021

Page view(s)

116
checked on Apr 17, 2024

Download(s) 10

590
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric