Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Festa, G*
Zollo, A.*
Lancieri, M.*
Title: Earthquake magnitude estimation from early radiated energy
Series/Report no.: /35(2008)
Publisher: American Geophysical Union
Issue Date: 27-Nov-2008
DOI: 10.1029/2008GL035576
Keywords: Early Warning
Rupture initiation
Seimic Source
Magnitude estimation
Abstract: From inspection of a large set of Japanese events, we investigate the scaling of the early radiated energy, inferred from the squared velocity integral (IV2) with the final magnitude of the event. We found that the energy can only discriminate whether the event has a magnitude larger or smaller than 5.8, and in the latter case it can allow for realtime magnitude estimation. However, by normalizing IV2 for the rupture area, the initial slip scales with the magnitude between 4 < M < 7 following the expected scaling laws. We show that the ratio between the squared peak displacement and IV2 is a proxy for the slip following the same scaling but it can be directly derived from the data, without any assumption on the rupture area. The scaling relationship between initial slip and magnitude can be used for early warning applications, when integrated in a probabilistic, evolutionary approach. Citation: Festa, G., A. Zollo, and M. Lancieri (2008), Earthquake magnitude estimation from early radiated energy, Geophys. Res. Lett., 35, L22307, doi:10.1029/ 2008GL035576.
Appears in Collections:Papers Published / Papers in press
04.06.01. Earthquake faults: properties and evolution

Files in This Item:

File SizeFormatVisibility
2008GL035576.pdf263.82 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA