Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4768
DC FieldValueLanguage
dc.contributor.authorallFolch, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia-
dc.contributor.authorallCosta, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia-
dc.contributor.authorallMacedonio, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia-
dc.date.accessioned2008-12-15T12:07:23Z-
dc.date.available2008-12-15T12:07:23Z-
dc.date.issued2009-
dc.identifier.urihttp://hdl.handle.net/2122/4768-
dc.description.abstractFALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of 8 volcanic ash. The model solves the advection-diffusion-sedimentation (ADS) equa- 9 tion on a structured terrain-following grid using a second-order Finite Differences 10 (FD) explicit scheme. Different parameterizations for the eddy diffusivity tensor 11 and for the particle terminal settling velocities can be used. The code, written 12 in FORTRAN 90, is available in both serial and parallel versions for Windows and 13 Unix/Linux/Mac X Operating Systems (OS). A series of pre- and post-process util- 14 ity programs and OS-dependent scripts to launch them are also included in the 15 FALL3D distribution package. Although the model has been designed to forecast 16 volcanic ash concentration in the atmosphere and ash loading at ground, it can also 17 be used to model the transport of any kind of airborne solid particles. The model 18 inputs are meteorological data, topography, grain-size distribution, shape and den- 19 sity of particles, and mass rate of particle injected into the atmosphere. Optionally, 20 FALL3D can be coupled with the output of the meteorological processor CALMET, a 21 diagnostic model which generates 3-D time-dependent zero-divergence wind fields 22 from mesoscale forecasts incorporating local terrain effects. The FALL3D model can 23 be a tool for short-term ash deposition forecasting and for volcanic fallout hazard 24 assessment. As an example, an application to the 22 July 1998 Etna eruption is also 25 presented.-
dc.language.isoEnglish-
dc.publisher.nameElsevier-
dc.relation.ispartofComputers & Geosciences-
dc.relation.ispartofseries/35(2009)-
dc.subjectvolcanic ash-
dc.subjectfallout-
dc.subjectcomputational model-
dc.subjectFORTRAN code-
dc.titleFALL3D: A Computational Model for Trans-port and Deposition of Volcanic Ash-
dc.typearticle-
dc.description.statusPublished-
dc.type.QualityControlPeer-reviewed-
dc.description.pagenumber1334–1342-
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous-
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk-
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous-
dc.identifier.doi10.1016/j.cageo.2008.08.008-
dc.relation.referencesAloisi, M., D’Agostino, M., Dean, K., Mostaccio, A., Neri, G., 504 2002. Satellite analysis and PUFF simulation of the eruptive 505 cloud generated by the Mount Etna paroxysm of 22 july 1998. 506 J. Geophys. Res. 107 (B12), doi:10.1029/2001JB000630. 507 Andronico, D., Del Carlo, P., Coltelli, M., 1999. The 22 July 1998 508 fire fountain episode at Voragine Crater (Mt. Etna, Italy). In: 509 VMSG 1999, Annual Meeting. Volcanic and Magmatic Studies 510 Group, Birmingham, UK. 511 Arastoopour, H., Wang, C., Weil, S., 1982. Particle-particle in- 512 teraction force in a diluite gas-solid system. Chem. Eng. Sci. 513 37 (9), 1379–1386. 514 Barberi, F., Macedonio, G., Pareschi, M., Santacroce, R., 1990. 515 Mapping the tephra fallout risk: an example from Vesuvius 516 (Italy). Nature 344, 142–144. 517 Barsotti, S., Neri, A., Scire, J., 2008. The VOL-CALPUFF model 518 for atmospheric ash dispersal. I. Approach and physical formu- 519 lation. J. Geophys. Res.(in press). 520 Bursik, M., 2001. Effect of wind on the rise height of volcanic 521 plumes. Geophys. Res. Lett. 18, 3621–3624. 522 Collins, W., Rasch, P., Boville, B., Hack, J., McCaa, J., 523 Williamson, D., Kiehl, J., Briegleb, B., 2004. Description of 524 the NCAR Community Atmosphere Model (CAM 3.0). Tech- 525 nical Report NCAR/TN-464+STR, National Center for Atmo- 526 spheric Research, Boulder, Colorado. 527 Coltelli, M., Miraglia, L., Scollo, S., 2008. Characterization of 528 shape and terminal velocity of tephra particles erupted dur- 529 ing the 2002 eruption of Etna volcano, italy. Bull. Volcanol.(in 530 press). 531 Connor, C., Hill, B., Winfrey, B., Franklin, M., La Femina, P., 532 2001. Estimation of volcanic hazards from tephra fallout. Nat- 533 ural Hazards Review 2, 33–42. 534 Costa, A., Dell’Erba, F., Di Vito, M., Isaia, R., Macedonio, G., 535 Orsi, G., Pfeiffer, T., 2008. Assessment of the volcanic ash 536 loading hazard from phlegrean fields caldera (italy). Bull. Vol- 22 537 canol.(in press). 538 Costa, A., Macedonio, G., Folch, A., 2006. A three-dimensional 539 Eulerian model for transport and deposition of volcanic ashes. 540 Earth Planet. Sci. Lett. 241, 634–647. 541 D’Amours, R., 1998. Modeling the ETEX plume dispersion with 542 the Canadian emergency response model. Atmos. Environ. 543 32 (24), 4335–4341. 544 Dellino, P., Mele, D., Bonasia, R., Braia, L., La Volpe, R., 2005. 545 The analysis of the influence of pumice shape on its terminal 546 velocity. Geophys. Res. Lett. 32 (L21306). 547 Dutton, J., Fichtl, G., 1969. Approximate equations of motion 548 for gases and liquids. J. Atm. Sci. 26, 241–254. 549 Folch, A., Cavazzoni, C., Costa, A., Macedonio, G., 2008. An 550 automatic procedure to forecast tephra fallout. J. Volcanol. 551 Geotherm. Res.(in press). 552 Ganser, G., 1993. A rational approach to drag prediction of spher- 553 ical and nonspherical particles. Powder Technol. 77, 143–152. 554 Heffter, J., Stunder, B., 1993. Volcanic Ash Forecast Transport 555 and Dispersion (Vaftad) Model. Weather and Forecasting 8, 556 533–541. 557 Hurst, A., 1994. ASHFALL - A computer program for estimat- 558 ing volcanic ash fallout. Report and users guide. Science Re- 559 port 94/23, 22p., Institute of Geological and Nuclear Sciences, 560 Wellington, New Zealand. 561 Macedonio, G., Costa, A., Longo, A., 2005. A computer model 562 for volcanic ash fallout and assessment of subsequent hazard. 563 Computers & Geosciences 31, 837–845. 564 Park, S., Kim, C., 1999. A numerical model for the simulation 565 of so2 concentrations in the Kyongin region, Korea. Atmos. 566 Environ. 33, 3119–3132. 567 Pfeiffer, T., Costa, A., Macedonio, G., 2005. A model for 568 the numerical simulation of tephra fall deposits. J. Volcanol. 569 Geotherm. Res. 140, 273–294. 570 Pielke, R., Cotton, W., Walko, R., Tremback, C., Nicholls, M., 571 Moran, M., Wesley, D., Lee, T., Copeland, J., 1992. A compre- 572 hensive meteorological modeling system-RAMS. Meteor. At-mos. Phys. 49, 69–91. 574 Sang, J., Lin, G., Zhang, B., 1999. Numerical modeling for emer- 575 gency response of nuclear accident. J. Wind Eng. Ind. Aerod. 576 81, 221–235. 577 Scire, J., Robe, F., M.E., F., Yamartino, R., 2000. A User’s Guide 578 for the CALMET Meteorological Model. Tech. Rep. Version 5, 579 Earth Tech, Inc., 196 Baker Avenue, Concord, MA 01742. 580 Scollo, S., Folch, A., Costa, A., 2008. A parametric and com- 581 parative study of different tephra fallout models. J. Volcanol. 582 Geotherm. Res.(in press). 583 Searcy, C., Dean, K., Stringer, W., 1998. Puff: A high-resolution 584 volcanic ash tracking model. J. Volcanol. Geotherm. Res. 80, 585 1–16. 586 Suzuki, T., 1983. A theoretical model for dispersion of tephra. In: 587 Shimozuru, D., Yokoyama, I. (Eds.), Arc Volcanism: Physics 588 and Tectonics. Terra Scientific Publishing Company (TERRA- 589 PUB), Tokyo, pp. 93–113. 590 Ulke, A., 2000. New turbulent parameterization for a disper- 591 sion model in atmospheric boundary layer. Atmos. Environ. 592 34, 1029–1042. 593 Walker, G.,Wilson, L., Bowell, E., 1971. Explosive volcanic erup- 594 tions I. Rate of fall of pyroclasts. Geophys. J. Roy. Astron. Soc. 595 22, 377–383. 596 Wilson, L., Huang, T., 1979. The influence of shape on the atmo- 597 spheric settling velocity of volcanic ash particles. Earth Planet. 598 Sci. Lett. 44, 311–324.-
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismo-
dc.description.obiettivoSpecifico4.3. TTC - Scenari di pericolosità vulcanica-
dc.description.journalTypeJCR Journal-
dc.description.fulltextopen-
dc.contributor.authorFolch, A.-
dc.contributor.authorCosta, A.-
dc.contributor.authorMacedonio, G.-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptBarcelona Supercomputing Center, Barcelona, Spain-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-0677-6366-
crisitem.author.orcid0000-0002-4987-6471-
crisitem.author.orcid0000-0001-6604-1479-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
FolCos-09.pdf1.12 MBUnknownView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

104
checked on Feb 10, 2021

Page view(s) 50

194
checked on Apr 20, 2024

Download(s) 5

84
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric