Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4708
DC FieldValueLanguage
dc.contributor.authorallWibberley, C. A. J.; Géosciences Azur, CNRS UMR6526, Universite´ de Nice – Sophia Antipolis, 250 rueen
dc.contributor.authorallGraham, Y.; Badley Geoscience Ltd, North Beck House, North Beck Lane, Hundleby,en
dc.contributor.authorallDi Toro, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2008-12-15T06:50:12Zen
dc.date.available2008-12-15T06:50:12Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4708en
dc.description.abstractIt is increasingly apparent that faults are typically not discrete planes but zones of deformed rock with a complex internal structure and three-dimensional geometry. In the last decade this has led to renewed interest in the consequences of this complexity for modelling the impact of fault zones on fluid flow and mechanical behaviour of the Earth’s crust. A number of processes operate during the development of fault zones, both internally and in the surrounding host rock, which may encourage or inhibit continuing fault zone growth. The complexity of the evolution of a faulted system requires changes in the rheological properties of both the fault zone and the surrounding host rock volume, both of which impact on how the fault zone evolves with increasing displacement. Models of the permeability structure of fault zones emphasize the presence of two types of fault rock components: fractured conduits parallel to the fault and granular core zone barriers to flow. New data presented in this paper on porosity–permeability relationships of fault rocks during laboratory deformation tests support recently advancing concepts which have extended these models to show that poro-mechanical approaches (e.g., critical state soil mechanics, fracture dilatancy) may be applied to predict the fluid flow behaviour of complex fault zones during the active life of the fault. Predicting the three-dimensional heterogeneity of fault zone internal structure is important in the hydrocarbon industry for evaluating the retention capacity of faults in exploration contexts and the hydraulic behaviour in production contexts. Across-fault reservoir juxtaposition or non-juxtaposition, a key property in predicting retention or across-fault leakage, is strongly controlled by the three-dimensional complexity of the fault zone. Although algorithms such as shale gouge ratio greatly help predict capillary threshold pressures, quantification of the statistical variation in fault zone composition will allow estimations of uncertainty in fault retention capacity and hence prospect reserve estimations. Permeability structure in the fault zone is an important issue because bulk fluid flow rates through or along a fault zone are dependent on permeability variations, anisotropy and tortuosity of flow paths. A possible way forward is to compare numerical flow models using statistical variations of permeability in a complex fault zone in a given sandstone/shale context with field-scale estimates of fault zone permeability. Fault zone internal structure is equally important in understanding the seismogenic behaviour of faults. Both geometric and compositional complexities can control the nucleation, propagation and arrest of earthquakes. The presence and complex distribution of different fault zone materials of contrasting velocity-weakening and velocity-strengthening properties is an important factor in controlling earthquake nucleation and whether a fault slips seismogenically or creeps steadily, as illustrated by recent studies of the San Andreas Fault. A synthesis of laboratory experiments presented in this paper shows that fault zone materials which become stronger with increasing slip rate, typically then get weaker as slip rate continues to increase to seismogenic slip rates. Thus the probability that a nucleating rupture can propagate sufficiently to generate a large earthquake depends upon its success in propagating fast enough through these materials in order to give them the required velocity kick. This propagation success is hence controlled by the relative and absolute size distributions of velocity-weakening and velocity- strengthening rocks within the fault zone. Statistical characterisation of the distribution of such contrasting properties within complex fault zones may allow for better predictive models of rupture propagation in the future and provide an additional approach to earthquake size forecasting and early warnings.en
dc.language.isoEnglishen
dc.publisher.nameGeological Society of Londonen
dc.relation.ispartofGeological Society, London, Special Publicationsen
dc.relation.ispartofseries/299 (2008)en
dc.subjectfault zoneen
dc.subjectearthquakeen
dc.titleRecent advances in the understanding of fault zone internal structure: a reviewen
dc.title.alternativeThe Internal Structure of Fault Zones – implications for mechanical and fluid flow propertiesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber5-33en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.identifier.doi10.1144/SP299.2en
dc.relation.referencesAGOSTA, F. 2008. Fluid flow properties of basin-bounding normal faults in platform carbonates, Fucino basin, central Italy. In: WIBBERLEY, C. A. J., KURZ, W., IMBER, J., HOLDSWORTH, R. E. & COLLETTINI, C. (eds) The Internal Structure of Fault Zones. Geological Society, London, Special Publications, 299, 277–291. ALLAN, U. S. 1989. Model for hydrocarbon migration and entrapment within faulted structures. American Association of Petroleum Geologists Bulletin, 73, 803–811. AMITRANO, D. & SCHMITBUHL, J. 2002. Fracture roughness and rouge distribution of a granite shear band. Journal of Geophysical Research, 107, 2357 doi:10.1029/2002JB001761. ANDREWS, D. J. 2005. Rupture dynamics with energy loss outside the slip zone. Journal of Geophysical Research, 110, doi:101029/2004JB003191. ANTONELLINI, M. A. & AYDIN, A. 1994. Effect of faulting on fluid flow in porous sandstones: petrophysical properties. American Association of Petroleum Geologists Bulletin, 78, 355–377. ANTONELLINI, M. A. & AYDIN, A. 1995. Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution. American Association of Petroleum Geologists Bulletin, 79, 642–671. AYDIN, A. & EYAL, Y. 2002. Anatomy of a normal fault with shale smear: implications for fault seal. American Association of Petroleum Geologists Bulletin, 86, 1367–1381. AYDIN, A. & JOHNSON, A. M. 1983. Analysis of faulting in porous sandstones. Journal of Structural Geology, 5, 19–31. BAIETTO, A., CADOPPI, P., MARTINOTTI, G., PERELLO, P., PERROCHET, P. & VUATEZ, F.-D. 2008. Assessment of termal circulations in strike-slip fault systems: the Terme di Valdieri case (Italian Western Alps). In: WIBBERLEY, C. A. J., KURZ, W., IMBER, J., HOLDSWORTH, R. E. & COLLETTINI, C. (eds) The Internal Structure of Fault Zones. Geological Society, London, Special Publications, 299, 317–339. BAKUN, W. H., AAGAARD, B. ET AL. 2005. Implications for prediction and hazard assessment from the 2004 Parkfield Earthquake – Parkfield, Nature, 437, 969–974. BARTON, C. A., ZOBACK, M.D. & MOOS, D. 1995. Fluid flow along potentially active faults in crystalline rock. Geology, 23, 683–686. BEELER, N. M. & TULLIS, T. E. 1996. Self-healing slip pulse in dynamic rupture models due to velocity dependent strength. Bulletin of the Seismological Society of America, 86, 1130–1148. BEELER, N. M., TULLIS, T. E. & GOLDSBY, D. L. 2008. Constitutive relationships and physical basis of fault strength due to flash heating. Journal of Geophysical Research, 113, B01401, doi:10.1029/ 2007JB004988. BENEDICTO, A., PLAGNES, V., VERGE´ LY, P., FLOTTE ´ , N. & SCHULTZ, R. A. 2008. Fault and fluid interaction in a rifted margin: integrated study of calcite-sealed fault-related structures (southern Corinth margin). In: WIBBERLEY, C. A. J., IMBER, J., HOLDSWORTH, R. E. & COLLETTINI, C. (eds) The Internal Structure of Fault Zones. Geological Society, London, Special Publications, 299, 257–275. BLANPIED, M. L., TULLIS, T. E. & WEEKS, J. D. 1987. Frictional behaviour of granite at low and high sliding velocities. Geophysical Research Letters, 14, 554–557. BLENKINSOP, T. G. 1989. Thickness–displacement relationships for deformation zones: discussion. Journal of Structural Geology, 11, 1051–1053. BOS, B. & SPIERS, C. 2002. Frictional-viscous flow of phyllosilicate-bearing fault rock: microphysical model and implications for crustal strength profiles. Journal of Geophysical Research, 107, 2028, doi:10.1029/2001JB000301. BOUCHON, M. 1997. The state of stress on same faults of the San Andreas system inferred from near-field strong motion data. Journal of Geophysical Research, 102, 11731–11744. BOUCHON, M. & VALLE´ E, M. 2003. Observation of long supershear rupture during the magnitude 8.1 Kunlunshan earthquake. Science, 301, 824–826. BOUTAREAUD, S., WIBBERLEY, C. A. J., FABBRI, O. & SHIMAMOTO, T. 2008a. Permeability structure and co-seismic thermal pressurization on fault branches: insights from the Usukidani fault, Japan. In: WIBBERLEY, C. A. J., KURZ, W., IMBER, J., HOLDSWORTH, R. E. & COLLETTINI, C. (eds) The Internal Structure of Fault Zones. Geological Society, London, Special Publications, 299, 341–361. BOUTAREAUD, S., CALUGARU, D.-G., HAN, R., FABBRI, O., MIZOGUCHI, K., TSUTSUMI, A. & SHIMAMOTO, T. 2008b. Clay-clast aggregates: a new textural evidence for seismic fault sliding? Geophysical Research Letters, 35, doi:10.1029/2007GL032554. BOWDEN, F. P. & TABOR, D. 1950. The Friction and Lubrication of Solids: Part I. Oxford, Clarendon Press. BRACE, W. F. & BYERLEE, J. D. 1966. Stick slip as a mechanism for earthquakes. Science, 168, 990–992. BRANTUT, N., SCHUBNEL, A., ROUZAUD, J.-N., BRUNET, F. & SHIMAMOTO, T. 2008. High velocity frictional properties of a natural clay bearing fault gouge. Journal of Geophysical Research, submitted. BRETAN, P. & YIELDING, G. 2005. Using buoyancy pressure profiles to assess uncertainty in fault seal calibration. In: BOULT, P. & KALDI, J. (eds) Evaluating Fault and Cap Rock Seals. AAPG Hedberg Series, no. 2, 151–162. BRETAN, P., YIELDING, G. & JONES, H. 2003. Using calibrated shale gouge ratio to estimate hydrocarbon column heights. American Association of Petroleum Geologists Bulletin, 87, 397–413. BROSCH, F.-J. & KURZ, W. 2008. Fault damage zones dominated by high-angle fractures within layer-parallel brittle shear zones: examples from the eastern Alps. In: WIBBERLEY, C. A. J., KURZ, W., IMBER, J., HOLDSWORTH, R. E. & COLLETTINI, C. (eds) The Internal Structure of Fault Zones. Geological Society, London, Special Publications, 299, 75–95. BROWN, A. 2003. Capillary effects on fault-fill sealing. American Association of Petroleum Geologists Bulletin, 87, 381–395. BRUHN, R. L., PARRY, W. T., YONKEE, W. A. & THOMPSON, T. 1994. Fracturing and hydrothermal alteration in normal fault zones. Pure and Applied Geophysics, 142, 609–644. BUTLER, C. A., HOLDSWORTH, R. E. & STRACHAN, R. A. 1995. Evidence for Caledonian sinistral strikeslip motion and associated fault zone weakening, Outer Hebrides Fault Zone, Scotland. Journal of the Geological Society, London, 152, 743–746. BYERLEE, J. D. 1978. Friction of rocks. Pure and Applied Geophysics, 116, 615–626. CAINE, J. S., EVANS, J. P. & FORSTER, C. B. 1996. Fault zone architecture and permeability structure. Geology, 24, 1025–1028. CHESTER, F.M.&CHESTER, J. S. 1998. Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California. Tectonophysics, 295, 199–221. CHESTER, F. M. & LOGAN, J. M. 1986. Implications for mechanical properties of brittle faults from observations of the Punchbowl Fault, California. Pure and Applied Geophysics, 124, 79–106. CHESTER, F. M., EVANS, J. P. & BIEGEL, L. R. 1993. Internal structure and weakening mechanism of the San Andreas Fault. Journal of Geophysical Research, 98, 771–786. CHILDS, C., WALSH, J. J. ET AL. 2007. Definition of a fault permeability predictor from outcrop studies of a faulted turbidite sequence, Taranaki, New Zealand. In: JOLLEY, S. J., BARR, D., WALSH, J. J. &KNIPE, R. J. (eds) Structurally Complex Reservoirs, Geological Society, London, Special Publications, 292, 235–258. CHILDS, C., WATTERSON, J. & WALSH, J. J. 1995. Fault overlap zones within developing normal fault systems. Journal of the Geological Society of London, 152, 535–549. CHILDS, C., WATTERSON, J. & WALSH, J. J. 1996. A model for the structure and development of fault zones. Journal of the Geological Society of London, 153, 337–340. CHILDS, C.,WATTERSON, J. &WALSH, J. J. 1997. Complexity in fault zone structure and implications for fault seal prediction. In: MØLLER-PEDERSEN, P. & KOESTLER, A. G. (eds) Hydrocarbon Seals: Importance for Exploration and Production. Norwegian Petroleum Society (NPF) Special Publications, 7, 61–72. Elsevier, Singapore. CHU, C. L., WANG, C. Y. & LIN, W. 1981. Permeability and frictional properties of San Andreas fault gouges. Geophysical Research Letters, 8, 565–568. COLLETTINI, C. &HOLDSWORTH, R. E. 2004. Fault zone weakening and character of slip along low-angle normal faults: insights from the Zuccale fault, Elba, Italy. Journal of the Geological Society, London, 161, 1039–1051. COULOMB, C. A. 1785. The theory of simple machines [in French]. Me´moires de Mathe´matique et de Physique pre´sente´ a` l’Acade´mie Royale des Sciences, 10, 161–331. COWAN, D. S. 1999. Do faults preserve a record of seismic faulting? A field geologist’s opinion. Journal of Structural Geology, 21, 995–1001. COX, S. F. 1995. Faulting processes at high fluid pressures: an example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia. Journal of Geophysical Research, 100, 12841–12860. CRAWFORD, B. R. 1998. Experimental fault sealing: shear band permeability dependency on cataclastic fault gouge characteristics. In: COWARD, M. P., DALTABAN, T. S. & JOHNSON, H. (eds) Structural Geology in Reservoir Characterization. Geological Society, London, Special Publications, 127, 27–47. DAS, S. 2007. The need to study speed. Science, 317, 905–906. DAVATZES, N. C., EICHHUBL, P. & AYDIN, A. 2005. The structural evolution of fault zones in sandstone by multiple deformation mechanisms; Moab fault, SE Utah. Geological Societey of America Bulletin, 117, 135–148. DEWHURST, D. N. & JONES, R. M. 2003. Influence of physical and diagenetic processes on fault geomechanics and reactivation. Journal of Geomechanical Exploration, 78–79, 153–157. DIETERICH, J. H. 1978. Time-dependent friction and the mechanics of stick–slip. Pure and Applied Geophysics, 116, 790–806. DIETERICH, J. H. 1979. Modeling of rock friction 1. Experimental results and constitutive equations, Journal of Geophysical Research, 84, 2161–2168. DI TORO, G. & PENNACCHIONI, G. 2005. Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalites (Adamello batholith, Southern Alps). Tectonophysics, 402, 54–79. DI TORO, G., GOLDSBY, D. L. & TULLIS, T. E. 2004. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature, 427, 436–439. DI TORO, G., HIROSE, T., NIELSEN, S., PENNACCHIONI, G. & SHIMAMOTO, T. 2006a. Natural and experimental evidence of melt lubrication of faults during earthquakes. Science, 311, 647–649. DI TORO, G., HIROSE, T., NIELSEN, S. & SHIMAMOTO, T. 2006b. Relating high-velocity rock friction experiments to coseismic slip in the presence of melts. In: ABERCROMBIE, R., MCGARR, A., DI TORO, G. & KANAMORI, H. (eds) Radiated Energy and the Physics of Faulting. American Geophysical Union Monograph Series, 170, 121–134. DOLAN, J. F. 2006. Greatness thrust upon them. Nature, 444, 276–278. EICHHUBL, P., D’ONFRO, P. S., AYDIN, A., WATERS, J. & MCCARTY, D. K. 2005. Structure, petrophysics, and diagenesis of shale entrained along a normal fault at Black Diamond Mines, California – Implications for fault seal. American Association of Petroleum Geologists Bulletin, 89, 1113–1137. EVANS, J. P. 1990. Thickness-displacement relationships for fault zones. Journal of Structural Geology, 12, 1062–1065. FAULKNER, D. R. & RUTTER, E. H. 2001. Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness? Geology, 29, 503–506. FAULKNER, D. R., LEWIS, A. C. & RUTTER, E. H. 2003. On the internal structure and mechanics of large strike–slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics, 367, 235–251. FAULKNER, D. R., MITCHELL, T. M., HEALY, D. & HEAP, M. J. 2006. Slip on ‘weak’ faults by the rotation of regional stress in the fracture damage zone. Nature, 444, 922–925. FAULKNER, D. R., MITCHELL, T. M., RUTTER, E. H. & CEMBRANO, J. 2008. On the structure and mechanical properties of large strike-slip faults. In: WIBBERLEY, C. A. J., KURZ, W., IMBER, J., HOLDSWORTH, R. E. & COLLETTINI, C. (eds) The Internal Structure of Fault Zones. Geological Society, London, Special Publications, 299, 139–150. FERRILL, D. A., SMART, K. J. & NECSOIU, M. 2008. Displacement–length scaling for single-event fault ruptures: insights from the Newberry Springs Fault Zone and implications for fault zone structure. In: WIBBERLEY, C. A. J., KURZ, W., IMBER, J., HOLDSWORTH, R. E. & COLLETTINI, C. (eds) The Internal Structure of Fault Zones. Geological Society, London, Special Publications, 299, 113–122. FIALKO, Y. & KHAZAN, Y. 2005. Fusion by the earthquake fault friction: stick or slip? Journal of Geophysical Research, 110, doi.org/10.1029/ 2005JB003869. FISHER, Q. J. & KNIPE, R. J. 2001. The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf. Marine & Petroleum Geology, 18, 1063–1081. FISHER, Q. J., CASEY, N., HARRIS, S. D. & KNIPE, R. J. 2003. Fluid-flow properties of faults in sandstone: the importance of temperature history. Geology, 31, 965–968. FLETCHER, J. B. & MCGARR, A. 2006. Distribution of stress drop, stiffness, and fracture energy over earthquake rupture zones. Journal of Geophysical Research, 111, doi:10.1029/2004JB003396. FOSSEN, H. & HESTHAMMER, J. 1998. Structural geology of the Gullfaks Field, northern North Sea. In: COWARD, M. P., DALTABAN, T. S. & JOHNSON, H. (eds) Structural Geology in Reservoir Characterization. Geological Society, London, Special Publications, 127, 231–261. FOSSEN, H. & HESTHAMMER, J. 2000. Possible absence of small faults in the Gullfaks field, northern North Sea: implications for downscaling faults in some porous sandstones. Journal of Structural Geology, 22, 851–863. FOSSEN, H., SCHULTZ, R. A., SHIPTON, Z. K. & MAIR, K. 2007. Deformation bands in sandstone: a review. Journal of the Geological Society of London, 164, 755–769. FOWLES, J.&BURLEY, S. 1994. Textural and permeability characteristics of faulted, high porosity sandstones. Marine & Petroleum Geology, 11, 608–623. FOXFORD, K. A., WALSH, J. J., WATTERSON, J., GARDEN, I. R., GUSCOTT, S. C. & BURLEY, S. D. 1998. Structure and content of the Moab Fault Zone, Utah, USA, and its implications for fault seal prediction. In: JONES, G., FISHER, Q. J. & KNIPE, R. J. (eds) Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs. Geological Society, London, Special Publications, 147, 87–103. FULLJAMES, J. R., ZIJERVELD, L. J. J. & FRANSSEN, R. C. M. W. 1997. Fault seal processes: systematic analyses of fault seals over geological and production time scales. In: MØLLER-PEDERSEN, P. & KOESTLER, A. G. (eds) Hydrocarbon Seals: Importance for Exploration and Production. NPF Special Publications, 7, 51–59. Elsevier, Singapore. GASPARINI, P., MANFREDI, G. & ZSCHAU, J. 2007. Earthquake Early Warning Systems. Springer, Berlin. GERDE, E. & MARDER, M. 2001. Friction and fracture. Nature, 413, 285–288. GIBSON, R. G. 1994. Fault-zone seals in siliclastic strata of the Columbus Basin, offshore Trinidad. AAPG Bulletin, 78, 1372–1385. GIBSON, R. G. 1998. Physical character and fluidflow properties of sandstone-derived fault gouge. In: COWARD, M. P., DALTABAN, T. S. & JOHNSON, H. (eds) Structural Geology in Reservoir Characterzation. Geological Society, London, Special Publications, 127, 83–97. GIBSON, R. G. & BENTHAM, P. A. 2003. Use of fault-seal analysis in understanding petroleum migration in a complexly faulted anticlinal trap, Columbus Basin, offshore Trinidad. American Association of Petroleum Geologists Bulletin, 87, 465–478. GILBERT, G. K. 1884. A theory of the earthquakes of the Great Basin, with a practical application. American Journal of Science, xxvii, 49–54. GOLDSBY, D. L. & TULLIS, T. E. 2002. Low frictional strength of quartz rocks at subseismic slip rates. Geophysical Research Letters, 29, 10.1029/ 2002GL01240. GOLDSBY, D. L. & TULLIS, T. E. 2003. Flash heating/ melting phenomena for crustal rocks at (nearly) seismic slip rates. SCEC Annual Meeting Proceedings and Abstracts, Palm Springs, CA. GROCOTT, J. 1981. Fracture geometry of pseudotachylyte generation zones: a study of shear fractures formed during seismic events. Journal of Structural Geology, 3, 169–178. HAN, R., SHIMAMOTO, T., HIROSE, T., REE, J-H. & ANDO, J. 2007. Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316, 878–881. HANDY, M. R.&STU¨ NITZ, H. 2002. Strain localization by fracturing and reaction weakening – a mechanism for initiating exhumation of subcontinental mantle beneath rifted margins. In: DE MEER, S., DRURY, M. R., DE BRESSER, J. H. P. & PENNOCK, G. M. (eds) Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geological Society, London, Special Publications, 200, 387–407. HANDY, M. R., HIRTH, G. & HOVIUS, N. 2007. Tectonic faults: agents of change on a dynamic Earth. In: HANDY, M. R., HIRTH, G. & HOVIOUS, N. (eds) The Dynamics of Fault Zones, 1–8. MIT Press, Cambridge, MA. HANEY, M. M., SNIEDER, R., SHEIMAN, J. & LOSH, S. 2005. A moving fluid pulse in a fault zone. Nature, 437, 46. HANKS, T. C. 1977. Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions. Pure and Applied Geophysics, 143, 441–458. HEALY, D., JONES, R. R. & HOLDSWORTH, R. E. 2006. Three-dimensional brittle shear fracturing by tensile crack interaction. Nature, 439, 64–67. HEATON, T. H. 1990. Evidence for and implications of self healing pulses of slip in earthquake rupture. Physics of Earth and Planetary Interiors, 64, 1–20. HESTHAMMER, J. & FOSSEN, H. 2000. Uncertainties associated with fault sealing analysis. Petroleum Geoscience, 6, 37–45. HICKMAN, S. 2007. Structure and properties of the San Andreas fault at seismogenic depths: recent results from the SAFOD experiment. Euro-conference of Rock Physics and Geomechanics on Natural hazards: Thermo-hydro-mechanical Processes in Rocks, 29th Course of the International School of Geophysics, Erice. HIROSE, T. & SHIMAMOTO, T. 2005a. Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research, 110, doi:10.1029/ 2004JB003207. HIROSE, T. & SHIMAMOTO, T. 2005b. Slip-weakening distance of faults during frictional melting as inferred from experimental and natural pseudotachylytes. Bulletin of the Seismological Society of America, 95, 1666–1673. HIROSE, T. & BYSTRICKY, M. 2007. Extreme dynamic weakening of faults during dehydration by coseismicshear heating. Geophysical Research Letters, 34, doi:10.1029/2007GL030049. HOLDSWORTH, R. E., STEWART, M., IMBER, J. & STRACHAN, R. A. 2001. The structure and rheological evolution of reactivated continental fault zones: a review and case study. In: MILLER, J. A., HOLDSWORTH, R. E., BUICK, I. S. & HAND, M. (eds) Continental Reactivation and Reworking. Geological Society, London, Special Publications, 184, 115–137. HULL, J. 1988. Thickness-displacement relationships for deformation zones. Journal of Structural Geology, 10, 431–435. IDE, S. & TAKEO, M. 1997. Determination of the constitutive relation of fault slip based on wave analysis. Journal of Geophysical Research, 102, 27379–27392. IMBER, J., HOLDSWORTH, R. E., BUTLER, C. A. & LLOYD, G. E. 1997. Fault-zone weakening processes along the reactived Outer Hebrides Fault Zone, Scotland. Journal of the Geological Society, London, 154, 105–109. IMBER, J., HOLDSWORTH, R. E., SMITH, S. A. F., JEFFERIES, S. P. & COLLETTINI, C. 2008. Frictionalviscous flow, seismicity and the geology of weak faults: a review and future directions. In:WIBBERLEY, C. A. J., KURZ, W., IMBER, J., HOLDSWORTH, R. E. & COLLETTINI, C. (eds) The Internal Structure of Fault Zones. Geological Society, London, Special Publications, 299, 151–173. JANECKE, S.U.&EVANS, J. P. 1988. Feldpsar-influenced rock rheologies. Geology, 16, 1064–1067. JEFFERIES, S. P., HOLDSWORTH, R. E., WIBBERLEY, C. A. J., SHIMAMOTO, T., SPIERS, C. J., NIEMEIJER, A. R. & LLOYD, G. E. 2006. The nature and importance of phyllonite development in crustal-scale fault cores: an example from the Median Tectonic Line, Japan. Journal of Structural, 28, 220–235. JOHANSEN, T. E. S. & FOSSEN, H. 2008. Internal geometry of fault damage zones in interbedded siliclastic sediments. In: WIBBERLEY, C. A. J., KURZ, W., IMBER, J., HOLDSWORTH, R. E. & COLLETTINI, C. (eds) The Internal Structure of Fault Zones. Geological Society, London, Special Publications, 299, 35–56. JOLLEY, S. J., DIJK, H., LAMENS, J. H., FISHER, Q. J., MANZOCCHI, T., EIKMANS, H. & HUANG, Y. 2007. Faulting and fault sealing in production simulation models: Brent Province, northern North Sea. Petroleum Geoscience, 13, 321–340. KING, G. & YIELDING, G. 1984. The evolution of a thrust fault system: process of rupture initiation, propagation and termination in the 1980 El Asnam (Algeria) earthquake. Geophysical Journal International, 77, 915–933. KOTO, B. 1893. On the cause of the Great Earthquake in Central Japan. Journal of the College of Science, Imperial University of Tokyo, 5, 294–353. LACHENBRUCH, A. H. 1980. Frictional heating, fluid pressure, and the resistance to fault motion. Journal of Geophysical Research, 85, 6249–6272. LEHNER, F. K. & PILAAR, W. F. 1997. The emplacement of clay smears in synsedimentary normal faults: inferences from field observations near Frechen, Germany. In: MØLLER-PEDERSEN, P.&KOESTLER, A. G. (eds) Hydrocarbon Seals: Importance for Exploration and Production, NPF Special Publications, 7, 39–50. Elsevier, Singapore. LOCKNER, D. A., BYERLEE, J. D., KUKSENKO, V., PONOMAREV, A. & SIDERON, A. 1992. Observations of quasi-static fault growth from acoustic emissions. In: EVANS, B. & WONG, T.-F. (eds) Fault Mechanics and Transport Properties of Rocks, 3–31. Academic Press, San Diego, CA. LOSH, S., EGLINTON, L., SCHOELL, M. & WOOD, J. 1999. Vertical and lateral fluid flow related to a large growth fault, South Eugene Island Block 330 Field, offshore Louisiana. American Association of Petroleum Geologists Bulletin, 83, 244–276. LUNN, R. J., SHIPTON, Z. K. & BRIGHT, A. M. 2008. How can we improve estimates of bulk fault zone hydraulic properties? In: WIBBERLEY, C. A. J., KURZ, W., IMBER, J., HOLDSWORTH, R. E. & COLLETTINI, C. (eds) The Internal Structure of Fault Zones. Geological Society, London, Special Publications, 299, 231–237. MA, K. F., SONG, S. R. ET AL. 2006. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project (TCDP). Nature, 444, 473–476. MANZOCCHI, T., WALSH, J. J., NELL, P. A. R. & YIELDING, G. 1999. Fault transmissibility multipliers for flow simulation models. Petroleum Geoscience, 5, 53–63. MARONE, C. 1998. Laboratory-derived friction laws and their application to seismic faulting. Annual Reviews in Earth and Planetary Sciences, 26, 643–696. MARONE, C.&KILGORE, B. 1993. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones. Nature, 362, 618–621. MARONE, C. & SCHOLZ, C. H. 1988. The depth of seismic faulting and the upper transition from stable to unstable slip regimes. Geophysical Research Letters, 15, 621–624. MARONE, C., SAFFER, D., IKARI, M. J. & HAINES, S. 2008. Frictional properties and hydromechanical processes in clay-rich fault gouge. EGU General Assembly, abstract EGU2008-A-06272. MAYEDA, K. & WALTER, W. R. 1996. Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes. Journal of Geophysical Research, 101, 11195–11208. MCGRATH, A. G. & DAVISON, I. 1995. Damage zone geometry around fault tips. Journal of Structural Geology, 17, 1011–1024. MEANS, W. D. 1995. Shear zones and rock history. Tectonophysics, 247, 157–160. MICARELLI, L. & BENEDICTO, A. 2008. Normal fault terminations in limestones from the SE-Basin (France): implications for fluid flow. In: WIBBERLEY, C. A. J., KURZ, W., IMBER, J., HOLDSWORTH, R. E. & COLLETTINI, C. (eds) The Internal Structure of Fault Zones Geological Society, London, Special Publications, 299, 123–138. MICARELLI, L., BENEDICTO, A. & WIBBERLEY, C.A. J. 2006. Structural evolution and permeability of normal fault zones in highly porous carbonate rocks. Journal of Structural Geology, 28, 1214–1227. MILDREN, S., HILLIS, R. & KALDI, J. 2002. Calibrating predictions of fault seal reactivation in the Timor Sea. APPEA Journal, 42, 187–202. MILDREN, S. D., HILLIS, R. R., DEWHURST, D. N., LYON, P. J., MEYER, J. J. & BOULT, P. J. 2005. FAST: a new technique for geomechanical assessment of the risk of reactivation-related breach of fault seals. In: BOULT, P. & KALDI, J. (eds) Evaluating Fault and Cap Rock Seals. AAPG Hedberg Series, no. 2, 73–85. MIZOGUCHI, K., HIROSE, T., SHIMAMOTO, T. & FUKUYAMA, E. 2007. Reconstruction of seismic faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake. Geophysical Research Letters, 34, doi:10.1029/2006GL027931. MOORE, D. E. & LOCKNER, D. A. 1995. The role of microcracking in shear-fracture propagation in granite. Journal of Structural Geology, 17, 95–114. MOORE, D. E. & RYMER, M. J. 2007. Talc-bearing serpentinite and the creeping section of the San Andreas Fault. Nature, 448, 795–797. MOORE, D. E., LOCKNER, D. A., IWATA, K., TANAKA, H. & BYERLEE, J. D. 2001. How Brucite may Affect the Frictional Properties of Serpentinite. U.S. Geological Survey Open File Reports, 01–320. MOORE, D. E., LOCKNER, D. A., SUMMERS, R., MA, S. & BYERLEE, J. D. 1996. Strength of chrysotileserpentinite gouge under hydrothermal conditions: can it explain a weak San Andreas fault? Geology, 24, 1041–1044. MOORE, D. E., LOCKNER, D. A., TANAKA, H. & IWATA, K. 2004. The coefficient of friction of chrysotile gouge at seismogenic depths. International Geology Review, 46, 385–398. MORRIS, A., FERRILL, D. A. & HENDERSON, D. B. 1996. Slip-tendency analysis and fault reactivation, Geology, 24, 275–278. MORROW, C. A., MOORE, D. E. & LOCKNER, D. A. 2000. The effect of mineral bond strength and adsorbed water on fault gouge frictional strength. Geophysical Research Letters, 27, 815–818. MORROW, C. A., SHI, L. Q. & BYERLEE, J. D. 1984. Permeability of fault gouge under confining pressure and shear stress. Journal of Geophysical Research, 89, 3193–3200. MUHURI, S. K., DEWERS, T. A., SCOTT, T. E. & RECHES, Z. 2004. Interseismic fault strengthening and earthquake-slip instability: friction or cohesion? Geology, 31, 881–884. NIELSEN, S., CARSLON, J. & OLSEN, K. 2000. Influence of friction and fault geometry on earthquake rupture. Journal of Geophysical Research, 105, 6069–6088. NIELSEN, S., DI TORO, G., HIROSE, T. & SHIMAMOTO, T. 2008. Frictional melt and seismic slip. Journal of Geophysical Research, 113, doi:10.1029/ 2007JB005122. NIEMEIJER, A. R. & SPIERS, C. J. 2005. Influence of phyllosilicates on fault strength in the brittle-ductile transition: insights from rock analogue experiments. In: BRUHN, D. & BURLINI, L. (eds) High Strain Zones: Structure and Physical Properties. Geological Society, London, Special Publications, 245, 303–327. NORDGA° RD BOLA° S, H. M., HERMANRUD, C. & TEIGE, G. M. G. 2005. Seal capacity estimation from subsurface pore pressures. Basin Research, 17, 583–599. O’CONNOR, S. J. 2000. Hydrocarbon–water interfacial tension values at reservoir conditions: inconsistencies in the technical literature and the impact on maximum oil and gas column height calculations. American Association of Petroleum Geologists Bulletin, 84, 1537–1541. OHNAKA, M. 2003. A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture. Journal of Geophysical Research, 108, doi:10.1029/ 2000JB000123. OLSON, E. L. & ALLEN, R. M. 2005. The deterministic nature of earthquake rupture. Nature, 438, 212–215. OTSUKI, K. 1978. On the relationship between the width of shear zone and the displacement along fault. Journal of the Geological Society of Japan, 84, 661–669. PATERSON, M. S. 1978. Experimental Rock Deformation – the Brittle Field. Springer, Berlin. PEACOCK, D. C. P. & SANDERSON, D. J. 1992. Effects of layering and anisotropy on fault geometry. Journal of the Geological Society, 149, 793–802. PERSSON, B. N. J. 2000. Sliding Friction: Physical Principles and Applications. Springer, Heidelberg. PITTARELLO, L., DI TORO, G., BIZZARRI, A., PENNACCHIONI, G., HADIZADEH, J. & COCCO, M. 2008. Energy partitioning during seismic slip in pseudotachylyte-bearing faults (Gole Larghe Fault, Adamello, Italy). Earth and Planetary Science Letters, 269, 131–139. POWER, W. L. & TULLIS, T. E. 1992. The contact between opposing fault surfaces at Dixie Valley, Nevada, and implications for fault mechanics. Journal of Geophysical Research, 97, 15425–15435. POWER, W. L., TULLIS, T. E. & WEEKS, J. D. 1988. Roughness and wear during brittle faulting. Journal of Geophysical Research, 93, 15268–15278. PRAKASH, V.&YUAN, F. 2004. Results of a pilot study to investigate the feasibility of using new experimental techniques to measure sliding resistance at seismic slip rates. Eos Transactions, AGU, 85, Fall Meeting Supplement, abstract T21D-02. RABINOWICZ, E. 1965. Friction and Wear of Materials. Wiley, New York. REID, H. F. 1910. The mechanism of the earthquake. In: The California Earthquake of Arpil 18, 1906, Report of the State Earthquake Investigation Commission, 2. Carnegie Institution, Washington, DC. REINEN, L. A., TULLIS, T. E.&WEEKS, J. D. 1992. Twomechanism model for frictional sliding of serpentinite. Geophysical Research Letters, 19, 1535–1538. RENARD, F., VOISIN, C., MARSAN, D. & SCHMITTBUHL, J. 2006. High resolution 3D laser scanner measurements of a strike–slip fault quantify its morphological anisotropy at all scales. Geophysical Research Letters, 33, doi:10.1029/2005GL025038. RICE, J. R. 2006. Heating and weakening of faults during earthquake slip. Journal of Geophysical Research, 111, doi:10.1029/2005JB004006. RICE, J. R. & COCCO, M. 2007. Seismic fault rheology and earthquake dynamics. In: HANDY, M. R., HIRTH, G. & HOVIOUS, N. (eds) The Dynamics of Fault Zones, 99–137. MIT Press, Cambridge, MA. ROBERTSON, E. C. 1983. Relationship of fault displacement to gouge and breccia thickness. Mining Engineering, 35, 1426–1432. ROIG-SILVA, C., GOLDSBY, D. L., DI TORO, G. & TULLIS, T. E. 2004. The role of silica content in dynamic fault weakening due to gel lubrication. Southern California Earthquake Center Annual Meeting, Proceedings and Abstracts Volume, XIV, 150. RUINA, A. 1983. Slip instability and state variable friction laws. Journal of Geophysical Research, 88, 10359–10370. SAFFER, D. M., FRYE, K., MARONE, C. & MAIR, K. 2001. Laboratory results indicating weak and potentially unstable frictional behaviour of smectite clay. Geophysical Research Letters, 28, 2297–2300. SAGY, A., BRODSKY, E. & AXEN, G. J. 2007. Evolution of fault-surface roughness with slip. Geology, 35, 283–286. SAMMIS, C. G., NADEAU, R.M. & JOHNSON, L. R. 1999. How strong is an asperity? Journal of Geophysical Research, 104, 10609–10619. SCHOLZ, C. H. 1987. Wear and gouge formation in brittle faulting. Geology, 15, 493–495. SCHOLZ, C. H. 1998. Earthquakes and friction laws. Nature, 391, 37–42. SCHOLZ, C. H. 2002. The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge. SCHULZ, S. E. & EVANS, J. P. 1998. Spatial variability in microscopic deformation and composition of the Punchbowl fault, southern California: implications for mechanisms, fluid-rock interaction, and fault morphology. Tectonophysics, 295, 223–244. SERONT, B.,WONG, T.-F., CAINE, J. S., FORSTER, C. B., BRUHN, R. L. & FREDRICH, J. T. 1998. Laboratory characterization of hydrodynamic properties of a seismogenic normal fault system. Journal of Structural Geology, 20, 865–881. SHELDON, H. A., BARNICOAT, A. C. & ORD, A. 2006. Numerical modelling of faulting and fluid flow in porous rocks: an approach based on critical state soil mechanics. Journal of Structural Geology, 28, 1468–1482. SHIMAMOTO, T. & LOGAN, J. M. 1981. Effects of simulated fault gouge on the sliding behavior of Tennessee sandstone: nonclay gouges. Journal of Geophysical Research, 86, 2902–2914. SHIPTON, Z. K. & COWIE, P. A. 2001. Damage zone and slip-surface evolution over mm to km scales in highporosity Navajo sandstone, Utah. Journal of Structural Geology, 23, 1825–1844. SHIPTON, Z. K., SODEN, A. M., KIRKPATRICK, J. D., BRIGHT, A. M. & LUNN, R. J. 2006. How thick is a fault? Fault displacement–thickness scaling revisited. In: ABERCROMBIE, R.,MCGARR, A., DI TORO, G. & KANAMORI, H. (eds) Radiated Energy and the Physics of Faulting. American Geophysical Union Monograph Series, 170, 193–198. SIBSON, R. H. 1977. Fault rocks and fault mechanisms. Journal of the Geological Society, London, 133, 191–213. SIBSON, R. H. 1983. Continental fault structure and the shallow earthquake source. Journal of the Geological Society, London, 140, 741–767. SIBSON, R. H. 1985. Stopping of earthquake ruptures at dilational fault jogs. Nature, 316, 248–251. SIBSON, R. H. 1986. Brecciation processes in fault zones: inference from earthquake rupturing. Pure and Applied Geophysics, 124, 159–175. SIBSON, R. H. 1990. Conditions for fault-valve behaviour. In: KNIPE, R. J. & RUTTER, E. H. (eds) Deformation Mechanisms, Rheology and Tectonics. Geological Society, London, Special Publications, 54, 15–28. SIBSON, R. H. 1992. Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics, 211, 283–293. SIBSON, R. H. 1995. Selective fault reactivation during basin inversion: potential for fluid redistribution through fault-valve action. In: BUCHANAN, J. G. & BUCHANAN, P. G. (eds) Basin Inversion. Geological Society, London, Special Publications, 88, 3–19. SIBSON, R. H. 1996. Structural permeability of fluid– driven fault-fracture meshes. Journal of Structural Geology, 18, 1031–1042. SIBSON, R. H. 2003. Thickness of the seismic slip zone. Bulletin of the Seismological Society of America, 93, 1169–1178. SOLIVA, R. & BENEDICTO, A. 2005. Geometry, scaling relations and spacing of vertically restricted normal faults. Journal of Structural Geology, 27, 317–325. SPERREVIK, S., GILLESPIE, P. A., FISHER, Q. J., HALVORSEN, T. & KNIPE, R. J. 2002. Empirical estimation of fault rock properties. In: KOESTLER, A. G. & HUNSDALE, R. (eds) Hydrocarbon Seal Quantification, 109–125. NPF Special Publications, 11. Elsevier, Amsterdam. SPRAY, J. G. 2005. Evidence for melt lubrication during large earthquakes. Geophysical Research Letters, 32, doi:10.1029/2004GL022293. STESKY, R. M., BRACE, W. F., RILEY, D. K. & ROBIN, P.-Y. F. 1974. Friction in faulted related rock at high temperature and pressure. Tectonophysics, 23, 177–203. STEWART, M., HOLDSWORTH, R. E. & STRACHAN, R. A. 2000. Deformation processes and weakening mechanisms within the frictional-viscous transition zone of major crustal-scale faults: insights form the Great Glen Fault Zone, Scotland. Journal of Structural Geology, 22, 543–560. SWANSON, M. T. 1988. Pseudotachylyte-bearing strikeslip duplex structures in the Fort Foster Brittle Zone, S. Maine. Journal of Structural Geology, 10, 813–828. SWANSON, M. T. 2005. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones. Journal of Structural Geology, 27, 871–887. TAKAHASHI, M. 2003. Permeability change during experimental fault smearing. Journal of Geophysical Research, 108, doi:10.1029/2002JB001984. TCHALENKO, J. S. 1970. Similarities between shear zones of different magnitudes. Bulletin of the Geological Society of America, 81, 1625–1640. TINTI, E., BIZZARRI, A., PIATANESI, A. & COCCO, M. 2004. Estimates of slip weakening distance for different dynamic rupture models. Geophysical Research Letters, 31, doi:10.1029/2993GL018811. TULLIS, T. E. & WEEKS, J. D. 1986. Constitutive behaviour and stability of frictional sliding of granite. Pure and Applied Geophysics, 124, 383–414. UEHARA, S. & SHIMAMOTO, T. 2004. Gas permeability evolution of cataclasite and fault gouge in triaxial compression and implications for changes in faultzone permeability structure through the earthquake cycle. Tectonophysics, 378, 183–195. UNDERHILL, J. R. &WOODCOCK, N. H. 1987. Faulting mechanisms in high-porosity sandstones; New Red Sandstone, Arran, Scotland. In: JONES, M. E. & PRESTON, M. F. (eds) Deformation of Sediments and Sedimentary Rocks. Geological Society, London, 91–105. URBAKH, M., KLAFTER, J., GOURDON, D. & ISRAELACHVILI, J. 2004. The non linear nature of friction. Nature, 430, 525–530. VAN DER ZEE, W.&URAI, J. L. 2005. Processes of fault evolution in a siliciclastic sequence: a case study from Miri, Sarawak, Malaysia. Journal of Structural Geology, 27, 2281–2300. VAN DER ZEE, W., WIBBERLEY, C. A. J. & URAI, J. L. 2008. The influence of layering and pre-existing joints on the development of internal structure in normal fault zones: the Lode`ve Basin, France. In: WIBBERLEY, C. A. J., KURZ, W., IMBER, J., HOLDSWORTH, R. E. & COLLETTINI, C. (eds) The Internal Structure of Fault Zones. Geological Society, London, Special Publications, 299, 57–74. WALLACE, R. E. & MORRIS, H. T. 1986. Characteristics of faults and shear zones in deep mines. Pure and Applied Geophysics, 124, 107–125. WATTERSON, J., CHILDS, C. & WALSH, J. J. 1998. Widening of fault zones by erosion of asperities formed by bed-parallel slip. Geology, 26, 71–74. WEBER, K. J.,MANDL, G., PILAAR, W. F., LEHNER, F.& PRECIOUS, R. G. 1978. The role of faults in hydrocarbon migration and trapping in Nigerian growth fault structures. 10th Annual Offshore Technology Conference Proceedings 4, 2643–2653. WEEKS, J. D. & TULLIS, T. E. 1985. Frictional sliding of dolomite: a variation in constitutional behavior. Journal of Geophysical Research, 90, 7821–7826. WESNOUSKY, S. G. 1988. Seismological and structural evolution of strike–slip faults. Nature, 335, 340–343. WESNOUSKY, S. G. 2006. Predicting the endpoints of earthquake ruptures. Nature, 444, 358–360. WHITE, S. H. & KNIPE, R. J. 1978. Transformation and reaction-enhanced ductility in rocks. Journal of the Geological Society, London, 135, 513–516. WIBBERLEY, C. A. J. 2005. Initiation of basement thrust detachments by fault-zone reaction weakening. In: BRUHN, D. & BURLINI, L. (eds) High Strain Zones: Structure and Physical Properties. Geological Society, London, Special Publications, 245, 347–372. WIBBERLEY, C. A. J. 2007. Talc at fault. Nature, 448, 756–757. WIBBERLEY, C. A. J. & SHIMAMOTO, T. 2003. Internal structure and permeability of major strike–slip fault zones: the Median Tectonic Line in W. Mie Prefecture, S. W. Japan. Journal of Structural Geology, 25, 59–78. WIBBERLEY, C. A. J. & SHIMAMOTO, T. 2005. Earthquake slip weakening and asperities explained by thermal pressurization. Nature, 436, 689–692. WIBBERLEY, C. A. J., PETIT, J.-P. & RIVES, T. 2000a. Micromechanics of shear rupture and the control of normal stress. Journal of Structural Geology, 22, 411–427. WIBBERLEY, C. A. J., PETIT, J.-P. & RIVES, T. 2000b. Mechanics of cataclastic ‘deformation band’ faulting in high-porosity sandstone, Provence. Comptes Rendus de l’Academie des Sciences, Serie II. Sciences de la Terre et des Planetes, 331, 419–425. WIBBERLEY, C. A. J., PETIT, J.-P. & RIVES, T. 2007. The mechanics of fault distribution and localization in high-porosity sands, Provence, France. In: LEWIS, H. & COUPLES, G. D. (eds) The Relationship between Damage and Localization. Geological Society, London, Special Publications, 289, 19–46. WILKINS, S. J. & GROSS, M. R. 2002. Normal fault growth in layered rocks at Split Mountain, Utah: influence of mechanical stratigraphy on dip linkage, fault restriction and fault scaling. Journal of Structural Geology, 24, 1413–1429. WINTSCH, R. P., CHRISTOFFERSON, R. & KRONENBERG, A. K. 1995. Fluid–rock reaction weakening of fault zones. Journal of Geophysical Research, 100, 13021–13032. WIPRUT, D. & ZOBACK, M. D. 2000. Fault reactivation and fluid flow along a previously dormant normal fault in the northern North Sea. Geology, 7, 595–598. YIELDING, G., 2002. Shale gouge ratio – calibration by geohistory. In: KOESTLER, A. G. & HUNSDALE, R. (eds) Hydrocarbon Seal Quantification, 1–15 NPF Special Publications, 11, Elsevier, Amsterdam. YIELDING, G., FREEMAN, B. & NEEDHAM, T. 1997. Quantitative fault seal prediction. American Association of Petroleum Geologists Bulletin, 81, 897–917. YOSHIOKA, N. 1986. Fracture energy and the variation of gouge and surface roughness during the frictional sliding of rocks. Journal of the Physics of the Earth, 34, 335–355. ZHANG, G. & RICE, J. R. 1998. Conditions under which velocity-weakening friction allows a selfhealing versus a cracklike mode of rupture. Bulletin of the Seismological Society of America, 88, 1466–1483. ZHANG, Y., SCHAUBS, P. M., ZHAO, C., ORD, A., HOBBS, B. E. & BARNICOAT, A. C. 2008. Fault-related dilation, permeability enhancement, fluid flow and mineral precipitation patterns: numerical models. In: WIBBERLEY, C. A. J., KURZ, W., IMBER, J., HOLDSWORTH, R. E. & COLLETTINI, C. (eds) The Internal Structure of Fault Zones. Geological Society, London, Special Publications, 299, 239–255.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextreserveden
dc.contributor.authorWibberley, C. A. J.en
dc.contributor.authorGraham, Y.en
dc.contributor.authorDi Toro, G.en
dc.contributor.departmentGéosciences Azur, CNRS UMR6526, Universite´ de Nice – Sophia Antipolis, 250 rueen
dc.contributor.departmentBadley Geoscience Ltd, North Beck House, North Beck Lane, Hundleby,en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptGéosciences Azur, CNRS UMR6526, Universite´ de Nice – Sophia Antipolis, 250 rue-
crisitem.author.deptBadley Geoscience Ltd, North Beck House, North Beck Lane, Hundleby,-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-6618-3474-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Wibberley_et_al_GSL2008.pdfMain article740.11 kBAdobe PDF
Show simple item record

Page view(s) 5

442
checked on Apr 24, 2024

Download(s) 50

61
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric