Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4691
DC FieldValueLanguage
dc.contributor.authorallVentura, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallVilardo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2008-12-12T14:44:20Zen
dc.date.available2008-12-12T14:44:20Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4691en
dc.description.abstractA Digital Terrain Model derived from high resolution Lidar data allows the determination of the morphometric and physical parameters of a lava flow erupted from the Somma–Vesuvius volcano in 1944. The downstream variation of morphometric parameters including slope, aspect, relative relief, thickness, width, and cross sectional area is analyzed, and the changes in viscosity, velocity and flow rate are estimated. The aims of the analyses are to recognize different flow surfaces, to reconstruct the flow kinematics, and to obtain information on the mechanism of emplacement. The results indicate that the 1944 lava flow can be divided in three sectors: a near vent sector (NVS) characterized by a toe-like surface, an intermediate sector (IS) with an ‘a’ātype brittle surface, and a distal sector (DS) with a sheet-like ductile surface. Lateral leveés and channels do not occur in NVS, whereas they are well developed in IS. In DS, leveés increase with an increasing distance from the vent. Fold-like surfaces occur in NVS and DS, reflecting local shortening processes due to a decrease in the slope of the substratum and overflows from the main channel. IS and DS emplaced between March 18 and 21, 1944, whereas NVS emplaced on March 19 and partly covered IS. The morphometric and physical parameters indicate that IS moved in a ‘tube’-like regime, whereas DS emplaced in a 'mobile crust' regime. The IS to DS transition is marked by an increase in velocity and the flow rate, and by a decrease in thickness, width, cross sectional area, and viscosity. This transition is due to an abrupt increase in the slope of the substratum. The estimated velocity values are in good agreement with the measurements during the 1944 eruption. The analysis used here may be extended to other lava flows. Some gravity flows (debris/mud flows, floods, and avalanches) have rheological properties and shapes similar to those of lavas, and the same process-form relationships may apply to these flows. The approach used here may be therefore useful for evaluating hazards from various gravity currents.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofGeomorphologyen
dc.relation.ispartofseries/95 (2008)en
dc.relation.isversionofhttp://hdl.handle.net/2122/2538en
dc.subjectLava flowen
dc.subjectGravity flowen
dc.subjectLidaren
dc.subjectDigital Terrain Model (DTM)en
dc.titleEmplacement mechanism of gravity flows inferred fromhigh resolution Lidar data: The 1944 Somma–Vesuvius lava flow (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber223–235en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.03. Geomorphologyen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.identifier.doi10.1016/j.geomorph.2007.06.005en
dc.relation.referencesAndronico, D., Cioni, R., Sulpizio, R., 1996. General stratigraphy of the past 19,000 yrs at Somma–Vesuvius. In: Santacroce, R., Orsi, G. (Eds.), Vesuvius Decade Volcano Workshop Handbook. Consiglio Nazionale delle Ricerche, Naples, pp. 1–22. Arnò, V., Principe, C., Rosi, M., Santacroce, R., Sbrana, A., Sheridan, M.F., 1987. Eruptive history. In: Santacroce, R. (Ed.), Somma– Vesuvius. Quaderni Ricerca Scientifica, Roma, pp. 53–103. Bagdassarov, N., Pinkerton, H., 2004. Transient phenomena in vesicular lava fows based on laboratory experiments with analogue materials. Journal of Volcanology and Geothermal Research 132, 115–136. Baloga, S.M., Glaze, L.S., Crisp, J.A., Stockman, S.A., 1998. New statistics for estimating the bulk rheology of active lava flows: Puu Oo examples. Journal of Geophysical Research 103, 5133–5142. Carabajal, C.C., Harding, D., Haugerud, R., 2005. Monitoring Mount St. Helens activity by airborne and space-based laser altimetry elevation measurements. American Geophysical Union EOS Transactions 86 Fall Meet. Suppl., G53B-0888. Carter, W.E., Shrestha, R., Tuell, G., Bloomquist, D., Sartori, M., 2001. Airborne Laser Swath Mapping shines new light on Earth's topography.American Geophysical Union EOS Transactions 82, 549. Cashman, K.V., Kerr, R., Griffiths, R., 2005. A laboratory model of surface crust formation and disruption on lava flows through nonuniform channels. Bulletin of Volcanology 68, 753–770. Dal Cin, C., Moens, L., Dierickx, Ph., Bastin, G., Zech, Y., 2005. An integrated approach for realtime floodmap forecasting on the Belgian Meuse River. Natural Hazards 36, 237–256. Gamba, P., Houshmand, B., 2002. Joint analysis of SAR, LIDAR and aerial imagery for simultaneous extraction of land cover, DTM and 3D shape of buildings. International Journal of Remote Sensing 23, 4439–4450. Glenn, N.F., Streutker, D.R., Chadwick, J., Thackray, G.D., Dorsch, S., 2006. Analysis of Lidar-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73, 131–148. Gregg, T.K.P., Fink, J.H., 2000. A laboratory investigation into the effects of slope on lava flow morphology. Journal of Volcanology and Geothermal Research 96, 145–159. Gregg, T.K.P., Fink, J.H., Griffiths, R.W., 1998. Formation of multiple fold generations on lava flow surfaces: Influence of strain cooling rate, and lava composition. Journal of Volcanology and Geothermal Research 80, 281–292. Griffiths, R.W.,Kerr, R.C., Cashman,K.V., 2003. Patterns of solidification in channel flows with surface cooling. Journal of Fluid Mechanics 496, 33–62. Harris, A.J.L., Flynn, L.P.,Matías, O., Rose,W.I., Cornejo, J., 2004. The evolution of an active silicic lava flow field: an ETM+perspective. Journal of Volcanology and Geothermal Research 135, 147–168. Harris, A., Bailey, J., Calvari, S., Dehn, J., 2005. Heat Loss Measured at a Lava Channel and its Implications for Down-Channel Cooling and Rheology. In: Manga, M., Ventura, G. (Eds.), Kinematics and Dynamics of Lava Flows. Geological Society of America Special Paper, vol. 396, pp. 125–146. Hofton, M.A., Blair, J.B., 2002. Laser altimeter return pulse correlation: a method for detecting surface topographic change. Journal of Geodynamics 34, 477–489. Hofton, M.A., Malavassi, E., Blair, J.B., 2006. Quantifying recent pyroclastic and lava flows at Arenal Volcano, Costa Rica, using medium-footprint Lidar. Geophysical Research Letters 33, L21306. doi:10.1029/2006GL027822. Imbò, G., 1945. Il parossismo vesuviano delMarzo 1944. Rendiconti Accademia Scienze. Fisiche e Matematiche di Napoli, vol. 13, pp. 309–325. Imbò, G., 1949. L'attività eruttiva vesuviana e relative osservazioni nel corso dell'intervallo 1906–1944 ed in particolare del parossismo del Marzo 1944. Annali Osservatorio Vesuviano 5, 185–380. Irish, J.L., Lillycrop,W.J., 1999. Scanning laser mapping of the coastal zone: the SHOALS system. ISPRS Journal of Photogrammetry and Remote Sensing 54, 123–129. Kilburn, C.R.J., 2004. Fracturing as a quantitative indicator of lava flow dynamics. Journal of Volcanology and Geothermal Research 132, 209–224. Kilburn, C.R.J., Guest, J.E., 1993. ‘a’ā lavas of Mount Etna, Sicily. In: Kilburn, C.R.J., Luongo, G. (Eds.), Active Lavas: Monitoring and Modeling.UniversityCollege of London Press, London, pp. 73–106. Lipman, P.W., Banks,N.G., 1987. Aa flow dynamics,Mauna Loa 1984. U. S. Geological Survey Professional Paper, vol. 1350, pp. 1527–1567. MacKay, M.E., Rowland, S.K., Mouginis-Mark, P.J., Garbeil, H., 1998. Thick lava flows of Karisimbi Volcano, Rwanda: insights from SIR-C interferometric topography. Bulletin of Volcanology 60, 239–251. Marianelli, P.,Metrich,N., Sbrana,A., 1999. Shallowand deep reservoirs involved in magma supply of the 1944 eruption ofVesuvius. Bulletin of Volcanology 61, 48–63. Mastin, L., Ghiorso, M.S, 2000. A numerical program for steady-state flow of magma–gas mixtures through vertical eruptive conduits. U.S. Geological Survey Open-File Report 2000. 209 pp. Mazzarini, F., Pareschi, M., Favalli, T., Isola, M., Tarquini, I., Boschi, S., 2005. Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data. Geophysical Research Letters 32, L04305. doi:10.1029/2004GL021815. Moore, I.D., Lewis,A.,Gallant, J.C., 1993. Terrain properties: estimation methods and scale effects. In: Jakeman, A.J., Beck, M.B., McAleer, M.J. (Eds.), Modeling Change in Environmental Systems. John Wiley and Sons, New York, pp. 189–214. Morgan, D.J., Blake, S., Rogers, N.W., DeVivo, B., Rolandi, G., Macdonald, R., Hawkesworthd, C.J., 2004. Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944. Earth and Planetary Science Letters 222, 933–946. Mouginis-Mark, P., Garbeil, H., 2005. Quality of TOPSAR topographic data for volcanology studies at Kilauea Volcano, Hawaii: an assessment using airborne Lidar data. Remote Sensing of Environment 96, 149–164. Oguchi, T., 1997. Drainage density and relative relief in humid steep mountains with frequent slope failure. Earth Surface Processes and Landforms 22, 107–120. Oliver, M.A.,Webster, R., 1990. Kriging: a method of interpolation for geographical information system. International Journal of Geographical Information Systems 4, 313332. Peitersen, M.N., Foote, M., Humphries, R., MacInnis, C., Mazie, I., Trump, D., Zimbelman, J.R., 2001. Geomorphometry of Ascraeus Mons Flow: implications for MGS image interpretation. Lunar and Planetary Science 32, 1472. Pinkerton, H., Stevenson, R.J., 1992. Methods of determining the rheological properties of magmas at sub-liquidus temperatures. Journal of Volcanology and Geothermal Research 53, 47–66. Roering, J.J., Kirchner, J.W., Dietrich, W.E., 1999. Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology.Water Resources Research 35, 580–853. Sakimoto, S.E.H., Gregg, T.K.P., 2001. Channeled flow: analytic solutions, laboratory experiments, and applications to lava flows. Journal of Geophysical Research 106, 8629–8648. Sakimoto, S.E.H., Zuber, M.T., 1998. Flow and convective cooling in lava tubes. Journal of Geophysical Research 103, 27465–27487. Santacroce, R. (Ed.), 1987. Somma–Vesuvius. Quaderni Ricerca Scientifica, Roma. 243 pp. Shrestha, R.L., Carter, W.E., Sartori, M., Luzum, B.J., Slatton, K.C., 2005. Airborne laser swath mapping: Quantifying changes in sandy beaches over time scales of weeks to years. ISPRS Journal of Photogrammetry and Remote Sensing 59, 222–232. Streutker, D.R.,Glenn, N.F., 2006. Lidarmeasurement of sagebrush steppe vegetation heights. Remote Sensing of Environment 102, 135–145. Ventura, G., Vilardo, G., 2006. Tomomorphometry of the Somma– Vesuvius volcano (Italy). Geophysical Research Letters 33, L17305. doi:10.1029/2006GL027116. Wilson, J.P., Gallant, J.C., 2000. Digital terrain analysis. In:Wilson, J.P., Gallant, J.C. (Eds.), Terrain Analysis. John Wiley and Sons, New York, pp. 1–27. Woolard, J.W., Colby, D., 2002. Spatial characterization, resolution, and volumetric change of coastal dunes using airborne Lidar. Geomorphology 48, 269–287.en
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.obiettivoSpecifico5.4. TTC - Sistema Informativo Territorialeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorVentura, G.en
dc.contributor.authorVilardo, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-9388-9985-
crisitem.author.orcid0000-0001-7240-4467-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
VenVil-08.pdf2.56 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

29
checked on Feb 7, 2021

Page view(s) 50

166
checked on Apr 24, 2024

Download(s)

28
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric