Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4620
DC FieldValueLanguage
dc.contributor.authorallFrondini, F.; Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, I-06100 Perugia, Italyen
dc.contributor.authorallCaliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCardellini, C.; Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, I-06100 Perugia, Italyen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMorgantini, N.; Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, I-06100 Perugia, Italyen
dc.contributor.authorallParello, F.; CFTA, Università di Palermo, Via Archirafi 36, I-90123 Palermo, Italyen
dc.date.accessioned2008-12-12T07:12:57Zen
dc.date.available2008-12-12T07:12:57Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4620en
dc.description.abstractThe CO2 degassing process from a large area on the Tyrrhenian side of central Italy, probably related to the input into the upper crust of mantle fluids, was investigated in detail through the geochemical study of gas emissions and groundwater. Mass-balance calculations and carbon isotopes show that over 50% of the inorganic carbon in regional groundwater is derived from a deep source highlighting gas−liquid separation processes at depth. The deep carbonate−evaporite regional aquifer acts as the main CO2 reservoir and when total pressure of the reservoir fluid exceeds hydrostatic pressure, a free gas phase separates from the parent liquid and escapes toward the surface generating gas emissions which characterise the study area. The distribution of the CO2 flux anomalies and the location of high PCO2 springs and gas emissions suggest that the storage and the expulsion of the CO2 toward the atmosphere are controlled by the geological and structural setting of the shallow crust. The average CO2 flux and the total amount of CO2 discharged by the study area were computed using surface heat flow, enthalpy and CO2 molality of the liquid phase circulating in the deep carbonate−evaporite aquifer. The results show that the CO2 flux varies from 1×104 mol y−1 km−2 to 5×107 mol y−1 km−2, with an average value of 4.8×106 mol y−1 km−2, about five times higher than the value of 1×106 mol y−1 derived by Kerrick et al. [Kerrick, D.M., McKibben, M.A., Seward, T.M., Caldeira, K., 1995. Convective hydrothermal CO2 emission from high heat flow regions. Chem. Geol. 121, 285–293] as baseline for terrestrial CO2 emissions. The total CO2 discharged from the study area is 0.9×1011 mol y−1, confirming that Earth degassing from Tyrrhenian central Italy is a globally relevant carbon sourceen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofGlobal and Planetary Changeen
dc.relation.ispartofseries/61 (2008)en
dc.subjectEarth degassingen
dc.subjectcarbon dioxideen
dc.subjectCO2 fluxen
dc.subjectgroundwateren
dc.titleCarbon dioxide degassing from Tuscany and Northern Latium (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber89–102en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical explorationen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1016/j.gloplacha.2007.08.009en
dc.relation.referencesAllard, P., Carbonelle, J., Dajlevic, D., Le Bronec, J., Morel, P., Robe, M.C., Maurenas, J.M., Faivre-Pierret,R., Martin,D., Sabroux, J.C., Zettwoog, P., 1991. Eruptive and diffuse emissions of CO2 fromMount Etna. Nature 351, 387–391. Arisi Rota, F., Fichera, R., 1985. Magnetic interpretation connected to Geomagnetic provinces: the Italian case history. 47th Meeting European Association of Exploration Geophysicists Proc. Baldi, P., Buonasorte, G., Ceccarelli, A., Ridolfi, A., D'Offizi, S., D'Amore, F., Grassi, S., Squarci, P., Taffi, L., Boni, C., Bono, P., Di Filippo, M., Martelli, M.G., Lombardi, S., Toro, B., 1982. Contributo alla conoscenza delle potenzialità geotermiche della Toscana e del Lazio. In: Elias, G., Panichi, C., Squarci, P. (Eds.), Progetto Finalizzato Energetica, Sottoprogetto Energia Geotermica. CNR, Pisa, Italy. Barberi, F., Innocenti, F., Ricci, C.A., 1971. Il magmatismo nell'Appennino centro-settentrionale. La Toscana Meridionale. Rend. Soc. Ital. Mineral. Petrol. 27, 169–210. Barchi, M.R., Minelli, G.R., Pialli, G., 1998. The CROP 03 Profile: A Synthesis of Results on Deep Structures of the Northern Apennines. Memorie Società Geologica Italiana, 52, pp. 383–400. Bencini, A., Duchi, V., Martini, M., 1977. Geochemistry of thermal spring of Tuscany (Italy). Chem. Geol. 19, 229–252. Berner, R.A., Lasaga, A.C., 1989. Modeling the geochemical carbon cycle. Sci. Am. 260, 74–81. Berner, R.A., Lasaga, A.C., Garrels, R.M., 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683. Brantley, S.L., Koepenick, K.W., 1995. Measured carbon-dioxide emissions from Oldoinyo-Lengai and the skewed distribution of passive volcanic fluxes. Geology 23, 933–936. Buonasorte, G., Castaldi, R., Ceccarelli, A., Costantini, A., D'Offizi, S., Lazzarotto, A., Ridolfi, A., Baldi, P., Barelli, A., Bestini, G., Bertrami, R., Calamai, A., Cameli, G., Corsi, R., Dacquino, C., Fiordalisi, A., Grezzo, A., Lovari, F., 1988. Ricerca ed esplorazione nell'area geotermica di Torre Alfina (Lazio-Umbria). Boll. Soc. Geol. Ital. 107, 265–337. Cardellini, C., Chiodini, G., Frondini, F., 2003. Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J. Geophys. Res. 2425. doi:10.1029/2002JB002165. Cataldi, R., Monelli, F., Squarci, P., Taffi, L., Zito, G., Calore, C., 1995. Geothermal ranking of Italian territory. Geothermics 24 (1), 115–129. Celati, R., Grassi, S., Calore, C., 1990. Overflow thermal springs of Tuscany (Italy). J. Hydrol. 118, 191–207. Cerling, T.E., Solomon, D.K., Quade, J., Bowman, J.R., 1991. On the isotopic composition of carbon in soil carbon-dioxide. Geochim. Cosmochim. Acta 55 (11), 3403–3405. Chiodini, G., 1994. Temperature, pressure and redox conditions governing the composition of the cold CO2 gases discharged in North Latium (Italy). Applied Geochemistry 9, 287–295 Chiodini, G., Frondini, F., 2001. Carbon dioxide degassing from the Albani Hills volcanic region, central Italy. Chem. Geol. 177, 67–83. Chiodini, G., Frondini, F., Marini, L., 1995a. Theoretical geothermometers and PCO2 indicators for aqueous solutions coming from hydrothermal systems of medium-low temperature hosted in carbonate-evaporite rocks. Applications to the thermal springs of the Etruscan Swell, Italy. Appl. Geochem. 10, 337–346. Chiodini, G., Frondini, F., Ponziani, F., 1995b. Deep structures and carbon dioxide degassing in central Italy. Geothermics 24, 81–94. Chiodini, G., Cioni, R., Guidi, M., Marini, L., Raco, B., 1998. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 13, 543–552. Chiodini, G., Frondini, F., Kerrick, D.M., Rogie, J.D., Parello, F., Peruzzi, L., Zanzari, A.R., 1999. Quantification of deep CO2 fluxes from central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chem. Geol. 159, 205–222. Chiodini, G., Frondini, F., Cardellini, C., Parello, F., Peruzzi, L., 2000. Rate of diffuse carbon dioxide earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine, Italy. J. Geophys. Res. 105 (B4), 8423–8434. Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., Ventura, G., 2004. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res. Lett. 31. doi:10.1029/ 2004GL019480. Civetta, L., Orsi, G., Scandone, P., Pece, R., 1978. Eastwards migrations of the Tuscan anatectic magmatism due to anticlockwise rotation of the Apennines. Nature 276, 604–606. Decandia, F.A., Lazzarotto, A., Liotta, D., Cernobori, L., Nicolich, R., 1998. The CROP 03: insights on post-collisional evolution of Northern Apennines. Mem. Soc. Geol. Ital. 52, 427–439. Deines, P., Langmuir, D., Harmon, R.S., 1974. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochim. Cosmochim. Acta 38, 1147–1164. Della Vedova, B., Pellis, G., Foucher, J.P., Rehault, J.P., 1984. Geothermal structure of Tyrrhenian Sea. Mar. Geol. 55, 271–289. Deutsch, C.V., Journel, A.G., 1998. GSLIB: Geostatistical Software Library and Users Guide. Applied Geostatistical Series. Oxford University Press, New York. Duchi, V., Minissale, A., Prati, F., 1987. Chemical composition of thermal springs, cold springs, streams, and gas vents in the Mt. Amiata geothermal region. J. Volcanol. Geotherm. Res. 31, 321–332. Duchi, V., Minissale, A., Paolieri, M., Prati, F., Valori, A., 1992. Chemical relationship between discharging fluids in the Siena-Radicofani graben and the deep fluids produced by the geothermal fields of Mt.Amiata, Torre Alfina and Latera (Central Italy). Geothermics 21 (3), 401–413. Gambardella, B., Cardellini, C., Chiodini, G., Frondini, F., Marini, L., Ottonello, G., Vetuschi Zuccolini, M., 2004. Fluxes of deep CO2 in the volcanic areas of central-southern Italy. J. Volcanol. Geotherm. Res. 136, 31–52. doi:10.1016/j.jvolgeores.2004.03.018. Gelmini, R., 1994. Ipotesi sul ruolo della linea tettonica trasversale Follonica- Val Marecchia sull'assetto strutturale della Toscana marittima. In: Lazzarotto, A., Lotta, D. (Eds.), Studi preliminari all'acquisizione dati del profilo CROP 18 Larderello-M.te Amiata. Studi Geologici Camerti, pp. 201–209. Keenan, J.H., Keyes, F.G., Hill, P.G., Moore, J.G., 1978. Steam Tables. Thermodynamic Properties of Waters Including Vapor, Liquid and Solid Phases (International System of Units-S.I. units). Wiley, New York. 162 pp. Kerrick, D.M., Caldeira, K., 1993. Metamorphic CO2 degassing from orogenic belts. Chem. Geol. 145, 213–232. Kerrick, D.M., McKibben, M.A., Seward, T.M., Caldeira, K., 1995. Convective hydrothermal CO2 emission from high heat flow regions. Chem. Geol. 121, 285–293. Lavecchia, G., 1990. The Tyrrehenian–Apennine system: structural setting and seismotectogenesis. Tectonophysics 47, 263–296. Marinelli, G., 1975. Magma evolution in Italy. In: Squyres, C.H. (Ed.), Geology of Italy. The Earth Science Society of the Libyan Arab Republic, Tripoli, pp. 165–219. Marty, B., Tolstikhin, I.N., 1998. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem. Geol. 145, 233–248.en
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.obiettivoSpecifico4.5. Degassamento naturaleen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorFrondini, F.en
dc.contributor.authorCaliro, S.en
dc.contributor.authorCardellini, C.en
dc.contributor.authorChiodini, G.en
dc.contributor.authorMorgantini, N.en
dc.contributor.authorParello, F.en
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, I-06100 Perugia, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, I-06100 Perugia, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Scienze della Terra, Universita` di Perugia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptDipartimento di fisica e Geologia di Perugia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptARPA Umbria-
crisitem.author.deptUniversità di Palermo, DiSTeM, Italy-
crisitem.author.orcid0000-0002-7539-9541-
crisitem.author.orcid0000-0002-8522-6695-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
FroCal-08.pdf1.82 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

38
checked on Feb 10, 2021

Page view(s) 50

211
checked on Apr 24, 2024

Download(s)

32
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric