Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4581
DC FieldValueLanguage
dc.contributor.authorallDe Campos, C. P.; Ludwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germanyen
dc.contributor.authorallDingwell, D. B.; Ludwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germanyen
dc.contributor.authorallPerugini, D.; University of Perugia, Department of Earth Sciences, Piazza Università, 06100 Perugia, Italyen
dc.contributor.authorallCivetta, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallFehr, T. K.; Ludwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germanyen
dc.date.accessioned2008-12-10T15:51:23Zen
dc.date.available2008-12-10T15:51:23Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4581en
dc.description.abstractWe present new electron microprobe and Sr-isotope analytical results from mixing experiments using natural volcanic samples. In order to constrain the dynamics of such mixing events, we applied a Taylor– Couette flow, simulating forced convection under very low Reynolds numbers, in a time series ranging from 1 h up to 1 week. The end-member melts derive from samples of the Campanian Ignimbrite (CI), in Italy. The CI is thought to represent a layered reservoir formed in 3 stages: 1) a resident phono-trachytic magma reservoir (end-member A); replenished by 2) a less evolved trachybasaltic–trachytic magma (endmember B of trachytic composition); 3) short-term pre-eruptive mixing in the shallow chamber between a new trachytic and the phono-trachytic resident magmas. Our experiments are motivated by this hypothesis. The two end-members are stirred together, under constant low flow velocity (0.5 rotations per minute). This initially generates single convection cells, which cause progressive homogenization of some major components. This is the case after 1, 4 and 9 h. After 16 h the 87Sr/86Sr-isotopic system is homogenized and the starting compositions are fully mixed. Then separate convection cells and compositional layering for major and minor elements emerged. Based on microprobe measurements of quenched melts (glass) from the 16-hour, 25-hour and 1-week long experiments, we confirm the separation of layers having different densities. This phenomenon is locally complicated by the production of micro-volumes of unmixed melts. Our results support the effectiveness of the interplay between convection and diffusion, enhanced by a double-diffusive–convection-driven differentiation for moderately high-silica magmas under high (nearliquidus) temperatures, attesting that differentiation initiates in the liquidus before the onset of fractional crystallization.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofChemical Geologyen
dc.relation.ispartofseries3-4/256(2008)en
dc.subjectMagma mixingen
dc.subjectExperimentsen
dc.subjectMajor and minor elementsen
dc.subjectAdvection/diffusionen
dc.titleHeterogeneities in magma chambers: Insights from the behavior of major and minor elements during mixing experiments with natural alkaline meltsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber131-145en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneousen
dc.identifier.doi10.1016/j.chemgeo.2008.06.034en
dc.relation.referencesAnderson, A.T., Davis, A.M., Fangqiong, L., 2000. J. Petrol. 41 (3), 449–473. Arienzo, I., Civetta, L., Heumann, A., Wörner, G., Orsi, G., in press. Isotopic evidence for open system processes within the Campanian Ignimbrite (Campi Flegrei — Italy) magma chamber. Bull. of Volcanol. doi:10.1007/s00445-008-0223-0. Bagdassarov, N.S., Fradkov, A.S.,1993. Evolution of double diffusion convection in a felsic magma chamber. J. Volcanol. Geotherm. Res. 54, 291–308. Berganz, G.W., 2000. On the dynamics of magma mixing by reintrusion: implications for pluton assembly processes. J. Struct. Geol. 22, 1297–1309. Bohrson, W.A., Spera, F.J., Fowler, S.J., Belkin, H.E., De Vivo, B., Rolandi, G., 2006. Petrogenesis of the Campanian ignimbrite: implications for crystal-melt separation and open-system processes from major and trace elements and Th isotopic data. In: DeVivo, B. (Ed.), Volcanism in the Campanian Plain: Vesuvius, Campi Flegrei and Ignimbrites. Developments in Volcanology, vol. 9, pp. 249–288. Blake, S., Ivey, G.N., 1986. Density and viscosity gradients in zoned magma chambers, and their influence in withdraw dynamics. J. Volcanol. Geotherm. Res. 30, 201–230. Cameron, K.L., 1984. Bishop Tuff revisited: new rare earth element data consistent with crystal fractionation. Science 224, 1338–1340. Chorin, A.J., 1994. Vorticity and Turbulence. Springer0387941975. 182 pp. Civetta, L., Orsi, G., Pappalardo, L., Fisher, R.V., Heiken, G., Ort, M., 1997. Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian Ignimbrite, Campi Flegrei caldera, Italy. J. Volcanol. Geotherm. Res. 75, 183–219. D 'Antonio, M., Tonarini, S., Arienzo, I., Civetta, L., Di Renzo, V., 2007. Components and processes in the magma genesis of the Phlegrean Volcanic District (Southern Italy). In: Beccaluva, L., Bianchini, G., Wilson, M. (Eds.), Cenozoic Volcanism in the Mediterranean Area. Geol. Soc. Am. (GSA) sp. v., Geol. Soc. Am., Sp. Pap., vol. 418, pp. 203–220. De Campos, C.P., Dingwell, D.B., Fehr, K.T., 2004. Decoupled convection cells from mixing experiments with alkaline melts from Campi Flegrei. Chem. Geol. 213, 227–251. De Campos, C.P., Dingwell, D.B., Fehr, K.T., 2005. Double diffusive convection in alkaline silicate melts: first experimental results. Phys. Chem. Glasses 46 (4), 330–333. De Vivo, B., Rolandi, G., Gans, P.B., Calbert, A., Bohrson,W.A., Spera, F.J., Belkin, H.E., 2001. Newconstraints on the pyroclastic eruptive history of the Campanian volcanic plain (Italy). Mineral. Petrol. 73, 47–65. Dingwell, D.B., 1986. Viscosity–temperature relationship in the system Na2Si2O5– Na4Al2O5. Geochem. Cosmochem. A. 74, 1261–1265. Fedèle, F., Giaccio, B., Isaia, R., Orsi, G., 2003. The Campanian ignimbrite eruption, Heirich Event 4, and Paleolithic Change in Europe: a high resolution investigation. Volcanism and Earth Atmosphere, 139. AGU Geophys Monograph, pp. 301–325. Fourcade, S., Allègre, C., 1981. Trace elements behavior in granite genesis: a case study: the calc-alkaline plutonic association from the Querigut Complex (Pyrénées, France). Contr. Mineral. Petrol. 76, 177–195. Furbish, D.J., 1997. Fluid physics in geology: an introduction to fluid motions on Earth's. surface and within its crust. Oxford Univ. Press Inc, USA. 496 pp. Gibb, F.G.F., Henderson, C.M.B., 2006. Chemistry of the Shiant Isles Main Sill, NWScotland, and wider implications for the petrogenesis of mafic sills. J. Petrol. 47 (1), 191–230. Hilthreth, W., 1981. Gradients in silicic magma chambers: implications for lithospheric magmatism. J. Geophys. Res. 86 (B11), 10153–10192. Huppert, H.E., Sparks, R.S., 1984. Double-diffusive convection due to crystallization in magmas. Am. Rev. Earth Planet. Sci. 12, 11–37. Jellinek, A.M., Kerr, R.C., Griffiths, R.W., 1999. Mixing and compositional stratification produced by natural convection. 1. Experiments and their applications to earth's core and mantle. J. Geophys. Res. 104 (B4), 7183–7201. Job, G., Hermann, F., 2006. Chemical potential—a quantity in search of recognition. Eur. J. Phys. 27, 353–371. Lange, R.A., Carmichael, I.S.E., 1987. Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3– Al2O3–TiO2–SiO2 liquids: new measurements and derived partial molar properties. Geochem. Cosmochem. A. 51, 2931–2946. Langmuir, C.M., Vocke, R.D., Hanson, G.N., Hart, S.R., 1978. A general mixing equation with application to Icelandic basalts. Earth Planet. Sci. Lett. 37, 380–392. Latypov, R.M., 2003. The origin of basic-ultrabasic sills with s-, d-, and i-shaped compositional profiles by in situ crystallization of a single input of phenocryst-poor parental magma. J. Petrol. 44 (9), 1619–1656. Le Maître, R.W. (Ed.), 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell Scientific Publ.. 180 pp. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 27, 745–750. Lesher, C.E., 1990. Decoupling of chemical and isotopic exchange during magma mixing. Nature 344, 235–237. Liang, Y., Richter, F.M., Watson, B., 1994. Convection in multicomponent silicate melts driven by coupled diffusion. Nature 369, 390–392. doi:10.1038/369390a0. Longo, A., Vassalli, M., Papale, P., Barsanti, M., 2006. Numerical simulation of convection and mixing in magma chambers replenished with CO2-rich magma, Geophys. Res. Lett. 21 (33), L21305. Mashima, H., 2004. Time scale of magma mixing between basalt and dacite estimated for the Saga-Futagoyama volcanic rocks in northwest Kyushu, southwest Japan. J. Volcanol. Geotherm. Res. 131, 333–349. Marianelli, P., Sbrana, A., Proto, M., 2006. Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian Ignimbrite. Geology 34 (11), 937–940 Data repository item 2006209. Martin, D., Griffiths, R.W., Campbell, I.H.,1987. Compositional and thermal convection in magma chambers. Contrib. Mineral. Petrol. 96, 465–475. Michael, P.J., 1983. Chemical differentiation of the Bishop Tuff and other high-silica magmas through crystallization processes. Geology 11, 31–34. Mysen, B.O., Richet, P., 2005. Silicate glasses and melts. Developments in Geochemistry, 10. Elsevier. 544 pp. Oldenburg, C.M., Spera, F.J., Yen, D.A., Sewell, G., 1989. Dynamic mixing in magma bodies: theory simulations and implications. J. Geophys. Res. 94 (B7), 9215–9236. Orsi, G., de Vita, S., Di Vito, M.A., 1996. The restless resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 74, 179–214. Ottino, J.M.,1989. The kinematics of mixing: stretching, chaos and transport. Cambridge Univ. Press, Cambridge. 396 pp. Pappalardo, L., Piochi, M., D´Antonio, M., Civetta, L., Petrini, R., 2002. Evidence for multistage magmatic evolution during the past 60 kyr at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data. J. Petrol. 43 (8), 1415–1434. Perugini, D., Poli, G., Mazzuoli, R., 2003. Chaotic advection, fractals and diffusion during mixing of magmas: evidence from lava flows. J. Volcanol. Geotherm. Res. 124, 255–279. Perugini, D., Ventura, G., Petrelli, M., Poli, G., 2004. Kinematic significance of morphological structures generated by mixing of magmas: a case study from Salina Island (Southern Italy). Earth Planet. Sci. Lett. 222, 1051–1066. Perugini, D., Petrelli, M., Poli, G., 2006. Diffusive fractionation of trace elements by chaotic mixing of magmas. Earth Planet. Sc. Lett. 243, 669–680. Perugini, D., De Campos, C.P., Dingwell, D.B., Petrelli, M., Poli, G., (in press) Trace element mobility during magma mixing: preliminary experimental results. Chem. Geol. doi:10.1016/j.chemgeo.2008.06.032. Perugini, D., Petrelli, M., Poli, G., De Campos, C.P., Dingwell, D.B., (submitted for publication). Time-scales of recent Phlegrean Fields eruptions inferred by the application of the ‘diffusive fractionation’ model of trace elements. Petrelli, M., Poli, G., Perugini, D., Peccerillo, A., 2005. Petrograph: a new software to visualize, model and present geochemical data in igneous petrology. Geochem., Geophys. Geosyst. 6 (7), Q07011. doi:10.1029/2005GC000932. Philpotts, A.R., 1990. Principles of Igneous and Metamorphic Petrology. Prentice Hall, New Jersey. 496 pp. Pouchou, L., Pichoir, F., 1984. A new model for quantitative X-ray microanalysis: Part I: applications to the analysis of homogeneous samples. Rech. Aerosp. 3, 13–38. Rollinson, H., 1993. Using geochemical data: evaluation, presentation, interpretation. Longman Scientific & Technical. John Wiley & Sons, New York. 352 pp. Shand, S.J., 1943. Eruptive rocks, their genesis, composition and classification, with a chapter on meteorites, 2nd Ed. John Willey and Sons, New York. 444 pp. Signorelli, S., Vaggelli, G., Francalanci, L., Rosi, M., 1999. Origin of magmas feeding the Plinian phase of the Campanian Ignimbrite eruption, Phegrean Fields (Italy): constraint based on matrix-glass and glass-inclusion compositions. J. Volcanol. Geotherm. Res. 91, 199–220. Sparks, R.S.J., Marshall, L.A., 1986. Thermal and mechanical constrains on mixing between mafic and silicic magmas. J. Volcanol. Geotherm. Res. 29, 99–124. Sparks, R.S.J., Huppert, H.E., Turner, J.S., 1984. The fluid dynamics of evolving magma chambers. Phil. Trans. R. Soc. Lond., Ser. A. 310, 511–534. Spera, F.J., Yuen, D.A., Clark, S., Hong, H., 1986. Double-diffusive convection in magma chambers: single or multiple layers. Geophys. Res. Lett. 13 (1), 153–156. Trial, A.F., Spera, F.J., 1990. Mechanisms for the generation of compositional heterogeneities in magma chambers. Geol. Soc. Am. Bull. 102, 353–367. Turner, J.S.,1973. Bouyance Effects in Fluids. Cambridge Univ. Press, Great Britain.170 pp. Turner, J.S., Campbell, H., 1986. Convection and mixing in magma chambers. Earth Sci. Rev. 23, 255–352. Wilson, M., 1991. Igneous Petrogenesis. Harper Collins Acad. 466 pp. Wilson, J.R., Larsen, S.B., 1985. Two dimensional study of a layered intrusion: the Hyllingen Series, Norway. Geol. Mag. 122, 97–121. Zimanowski, B., Büttner, R., Koopmann, A., 2004. Experiments on magma mixing. Geophys. Res. Let. 31, L09612. doi:10.1029/2004GL0196876.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.obiettivoSpecifico3.5. Geologia e storia dei sistemi vulcanicien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorDe Campos, C. P.en
dc.contributor.authorDingwell, D. B.en
dc.contributor.authorPerugini, D.en
dc.contributor.authorCivetta, L.en
dc.contributor.authorFehr, T. K.en
dc.contributor.departmentLudwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germanyen
dc.contributor.departmentLudwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germanyen
dc.contributor.departmentUniversity of Perugia, Department of Earth Sciences, Piazza Università, 06100 Perugia, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentLudwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germanyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptLudwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germany-
crisitem.author.deptLudwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germany-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptLudwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germany-
crisitem.author.orcid0000-0002-3332-789X-
crisitem.author.orcid0000-0002-2888-6128-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
DeCDin-08.pdf1.38 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

40
checked on Feb 10, 2021

Page view(s)

144
checked on Apr 24, 2024

Download(s)

26
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric