Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4519
DC FieldValueLanguage
dc.contributor.authorallTaran, Y.; Instituto de Geofísica, UNAM, México DF, Mexicoen
dc.contributor.authorallRouwet, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallInguaggiato, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallAiuppa, A.; University of Palermo, Italyen
dc.date.accessioned2008-12-09T09:51:40Zen
dc.date.available2008-12-09T09:51:40Zen
dc.date.issued2008-07-07en
dc.identifier.urihttp://hdl.handle.net/2122/4519en
dc.description.abstractFour groups of thermal springs with temperatures from 50 to 80 °C are located on the S–SW–W slopes of El Chichón volcano, a composite dome-tephra edifice, which exploded in 1982 with a 1 km wide, 160 m deep crater left. Very dynamic thermal activity inside the crater (variations in chemistry and migration of pools and fumaroles, drastic changes in the crater lake volume and chemistry) contrasts with the stable behavior of the flank hot springs during the time of observations (1974–2005). All known groups of hot springs are located on the contact of the basement and volcanic edifice, and only on the W–SW–S slopes of the volcano at almost same elevations 600–650 m asl and less than 3 km of direct distance from the crater. Three groups of near-neutral (pH≈6) springs at SW–S slopes have the total thermal water outflow rate higher than 300 l/s and are similar in composition. The fourth and farthest group on the western slope discharges acidic (pH≈2) saline (10 g/kg of Cl) water with a much lower outflow rate (b10 l/s). Water–rock interaction modeling of main types of the El Chichón thermal waters using regular log Q/K graphs (saturation indices vs temperature) showed maximum equilibrium temperature slightly higher than 200 °C. Acidic waters are equilibrated with some clay minerals at about 120 °C. Three main sources of the salinity of thermal water are suggested on the basis of mixing plots and isotopic data: a magmatic source for CO2, boron, sulfur and a limited part of Cl; volcanic rock source for the major cations and trace elements; the oil-bearing evaporitic basement source (oil-field brine?) for NaCl, Br, a part of Ca and some trace elements. All flank thermal springs end up in the river Rio Magdalena that has a variable seasonal flow rates from 4 to 20 m3/s. Any changes in the chemistry of springs must notably change the composition of the streams draining hot springs and eventually, Rio Magdalena. A monthly geochemical monitoring of Rio Magdalena and streams draining main hot springs would be a useful tool for surveying the activity of the volcano.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries2/178(2008)en
dc.subjectvolcano–hydrothermal systemen
dc.subjectcrater lakeen
dc.subjectacidic wateren
dc.subjecttrace elementsen
dc.subjectthermochemical modelingen
dc.subjectEl Chichón volcanoen
dc.titleMajor and trace element geochemistry of neutral and acidic thermal springs at El Chichón volcano, Mexico Implications for monitoring of the volcanic activityen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber224–236en
dc.identifier.URLhttp://www.elsevier.com/wps/find/homepage.cws_homeen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.01. Geochemical dataen
dc.identifier.doi10.1016/j.jvolgeores.2008.06.030en
dc.relation.referencesAtlas del Agua de la Republica Mexicana, 1976. Secretaria de recursos hidraulicos. Mexico. Bernard, A., Mazot, A., 2004. Geochemical evolution of the young crater lake of Kelud volcano in Indonesia. In: Wanty, R.B., SealII II, R.R. (Eds.), Water–Rock Interaction. Balkema, pp. 87–90. Cañul, R.F., Rocha, V.L., 1981. Informe geológico de la zona geotérmica de “El Chichonal”. Chiapas. Com. Fed. de Electr., Morelia, México. Informe 32–81, 38 p. Capaccioni, B., Taran, Y., Tassi, F., Vaselli, O., Mangani, G., Macías, J.L., 2004. Source conditions and degradation processes of light hydrocarbons in volcanic gases: an example from El Chichón volcano (Chiapas State, Mexico). J. Volcanol. Geotherm. Res. 206, 81–96. Casadevall, T.J., De la Cruz-Reyna, S., Rose, W.I., Bagley, S., Finnegan, D.L., Zoller, W.H., 1984. Crater lake and post-eruption hydrothermal activity, El Chichón Volcano, Mexico. J. Volcanol. Geotherm. Res. 23, 169–191. Damon, P., Montesinos, E., 1978. Late Cenozoic Volcanism and metallogenesis over an active Benioff Zone in Chiapas, Mexico. Ariz. Geol. Soc. Dig. 11, 155–168. Delfin Jr., F.G., Villarosa,H.G., Layugan, D.B., Clemente, V., Candelaria,M.R., Ruaya, J.R.,1996. Geothermalexploration of the pre-1991 Mount Pinatubo hydrothermal system. In: Newhall, C.G., Punongbayan, S. (Eds.), Fire and Mud. University of Washington Press, pp. 197–212. Delmelle, P.,Bernard,A.,1994. geochemistry,mineralogy, andchemicalmodellingof the acid crater lake of Kawa Ijen volcano, Indonesia. Geochim. Cosmochim. Acta 58, 2445–2460. Duffield, W.A., Tilling, R.I., Cañul, R., 1984. Geology of El Chichón Volcano, Chiapas, Mexico. J. Volcanol. Geotherm. Res. 20, 117–132. Egeberg, P.C., Aagaard, P., 1989. Origin and evolution of formation waters from oil fields on the Norvegian shelf. Appl. Geochem. 4, 131–142. Espíndola, J.M., Macías, J.L., Tilling, R.I., Sheridan, M.F., 2000. Volcanic history of El Chichón Volcano (Chiapas, Mexico) during the Holocene, and its impact on human activity. Bull. Volcanol. 62, 90–104. Fournier, R.O., 1981. Application of water chemistry to geothermal exploration and reservoir engineering. In: Rybach, L., Muffler, L.J.P. (Eds.), Geothermal Systems, Principles and Case Histories. Wiley, pp. 109–140. García-Palomo, A., Macias, J.L., Espindola, J.M., 2004. Strike-slip faults and K-alkaline volcanism at El Chichón volcano, southeastern Mexico. J. Volcanol. Geotherm. Res. 136, 247–268. Giggenbach, W.F., 1974. The chemistry of Crater Lake, Mt. Ruapehu (New Zealand) during and after the 1971 active period. N.Z.J. Sci. 17, 33–45. Giggenbach, W.F., 1988. Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochim. Cosmochim. Acta 52, 2749–2765. Giggenbach,W.F.,1992. isotopic shift inwaters fromgeothermal andvolcanic systems along convergent plate boundaries and their origin. Earth Planet. Sci. Lett. 113, 495–510. Inbar, M., Reyes Enriquez, A., and Graniel Graniel, J.H. 2001. Morphological changes and erosion processes following the 1982 eruption of El Chichón volcano, Chiapas, Mexico. Geomorphologie: relief, processes, environment. N3, 175-184. Jimenez, Z., Espindola, V.H., Espindola, J.M., 1999. Evolution of the seismicity from the 1982 eruption of El Chichon volcano, Chiapas, Mexico. Bull. Volcanol. 61, 411–422. Kempter, K.A., Rowe, G.L., 2000. Leakage of Active Crater Lake brine through the north flank at Rincón de la Vieja volcano, northwest Costa Rica, and implications for crater collapse. J. Volcanol. Geotherm. Res. 97, 143–159. Kikawada, Y., Oi, T., Honda, T., Ossaka, T., Kakihana, H., 1993. Lantanoid abundances of acidic hot springs and crater lake waters in the Kusatsu-shirane volcano region. Geochem. J. 27, 19–33. Kirsanova, T.P., Vergasova, L.P., Yurova, L.M., Taran, Y.A., 1983. Fumarolic activity of Shiveluch and Kizimenvolcanoes, Kamchatka, in 1978–79.Volcanol. Seismol. 2, 34–51. Kusakabe, M., Komoda, Y., Takano, B., Abiko, T., 2000. Sulfur isotopic effect in the disproportionation reaction of sulphur dioxide in hydrothermal fluids: implications for the δ34S variations of dissolved bisulfate and elemental sulfur from active crater lakes. J. Volcanol. Geotherm. Res. 97, 287–307. Luhr, J.F., Carmichael, I.S.E., Varekamp, J.C., 1984. The 1982 eruptions of El Chichón volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices. J. Volcanol. Geotherm. Res. 23, 69–108. Macías, J.L., Sheridan, M.F., Espíndola, J.M., 1997. Reappraisal of the 1982 eruptions of El Chichón Volcano, Chiapas, Mexico: new data from proximal deposits. Bull. Volcanol. 58, 459–471. Macías, J.L., Arce, J.L., Mora, J.C., Espíndola, J.M., Saucedo, R., 2003. A 550-year-old Plinian eruption at El Chichón Volcano, Chiapas, Mexico: explosive volcanism linked to reheating of the magma reservoir. J. Geophys. Res. 108 (B12). Manea, M., Manea, V., 2008. On the origin of El Chichon volcano and subduction of Tehuantepec Ridge: a geodynamical perspective. J. Volcanol. Geotherm. Res. doi:10.1016/j/jvolgeores.2008.02.028. Molina Berbeyer, R., 1974. Informe preliminar geoquímico de los fluidos geotérmicos del volcán del Chichonál, Chiapas. Unpublished report. Comisión Federal de Electricidad, Mexico. Informe 27–74, 24 p. Mulleried, F.K.G., 1933. El Chichón, único volcán en actividad en el sureste de México, Revista Instituto de Geología, UNAM. México 33, 156–170. Pang, Z.H., Reed, M.,1998. Theoretical chemical geothermometry on geothermalwaters: Problems and methods. Geochim. Cosmochim. Acta 62, 1083–1091. Palandri, J.L., Reed, M.H., 2001. Reconstruction in situ composition of sedimentary formation waters. Geochim. Cosmochim. Acta 65, 1741–1767. Pasternack, G.B., Varekamp, J.C., 1994. The geochemistry of the Keli Mutu crater lakes, Flores, Indonesia. Geochem. J. 28, 243–262. Reed, M.H., 1982. Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochim. Cosmochim. Acta 46, 513–528. Rouwet, D., Taran, Y.A., Varley, N.R., 2004. Dynamics and mass balance of El Chichón crater lake, Mexico. Geofísica Internacional 43 (3), 427–434. Rouwet,D., Taran,Y.A, Inguaggiato, S.,Varley,N., Santiago Santiago, J.A., 2008.Hydrochemical dynamics of the "lake-spring" system in the crater of El Chichon volcano (Chiapas, Mexico). J. Volcanol. Geotherm. Res.178, 237–248 doi:10.1016/j.jvolgeores.2008.06.026. Rowe, G.L., Brantley, S.L., Fernández, J.F., Borgia, A., 1995. The chemical and hydrologic structure of Poás Volcano, Costa Rica. J. Volcanol. Geotherm. Res. 64, 233–267. Ruaya, J.R., Ramos, M.N., Gonfiantini, R., 1992. Assessment of magmatic components of the fluids at Mt.Pinatubo volcanic-geothermal system, Philippines from chemical and isotopic data. Reports of Geol. Surv. Japan, vol. 279, pp. 141–151. Schminke, H.U., 2004. Volcanism. Springer Verlag. 540 p. Stimac, J.A., Goff, F., Counce, D., Larocque, A.C.L., Hilton, D.R., Morgenstern, U., 2004. The crater lake and hydrothermal system of Mount Pinatubo, Philippines: evolution in the decade after the eruption. Bull. Volcanol. 66, 149–167. Symonds, R.B., Rose, W.I., Reed, M.H., Lichte, F.E., Finnegan, D.L., 1987. Volatilization, transport and sublimation of metallic and non-metallic elements in hightemperature gases at Merapi volcano, Indonesia. Geochim. Cosmochim. Acta 51, 2083–2101. Taran, Y.A., Pokrovsky, B.G., Dubik, Y.M., 1989. Isotopic composition and origin of water from andesitic magmas. Doklady (Earth Sci.) 304, 440–443. Taran, Y.A., Hedenquist, J.W., Korzhinsky, M.A., Tkachenko, S.I., Shmulovich, K.I., 1995. Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kuril Islands. Geochim. Cosmochim. Acta 59, 1749–1761. Taran, Y.A., Znamensky, V.S., Yurova, L.M., 1996. Geochemical model of hydrothermal system of Baransky volcano, Iturup, Kuril Islands. Volcanol. Seismol. 17, 471–496. Taran, Y., Fischer, T.P., Pokrovsky, B., Sano, Y., Armienta, M.A., Macías, J.L., 1998. Geochemistry of the volcano–hydrothermal system of El Chichón Volcano, Chiapas, Mexico. Bull. Volcanol. 59, 436–449. Tassi, F., Vaselli, O., Capaccioni, B., Macías, J.L., Nencetti, A., Montegrossi, G., Magro, G., 2003. Chemical composition of fumarolic gases and spring discharges from El Chichón volcano, Mexico: causes and implications of the changes detected over the period 1998–2000. J. Volcanol. Geotherm. Res. 123, 105–121. Templos, L.A., Munguia Bracamontes, F., Barrera, V.M. 1981. Observaciones geoquímicas en la zona geotérmica del Chichonál, Chiapas, Mexico. Unpublished report. Comisión Federal de Electricidad, Mexico. Informe 33–81, 32 p. Valdez, C., Martinez, A., Ramos, S., Morquecho, C., 2005. Sismicidad en el volcán Chichón, Chiapas, de mayo 2003 a marzo 2005. Abstracts EOS (Unión Geofísica Mexicana), p. 198. Varekamp, J.C., Luhr, J.F., Prestegaard, K.L., 1984. The 1982 eruptions of El Chichón Volcano (Chiapas, Mexico): character of the eruptions, ash-fall deposits, and gasphase. J. Volcanol. Geotherm. Res. 23, 39–68. Wood, S., 2003. The geochemistry of rare earth elements and yttrium in geothermal waters. Soc. Economic Geologist Spec. Publications, vol. 10, pp. 133–158.en
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorTaran, Y.en
dc.contributor.authorRouwet, D.en
dc.contributor.authorInguaggiato, S.en
dc.contributor.authorAiuppa, A.en
dc.contributor.departmentInstituto de Geofísica, UNAM, México DF, Mexicoen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentUniversity of Palermo, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptInstitute of Geophysics, Universidad Nacional Autonoma de Mexico, Ciudad Universitario, Del. Coyocan, 04510 Mexico, DF, Mexico-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0003-3390-4316-
crisitem.author.orcid0000-0003-3366-3882-
crisitem.author.orcid0000-0003-3726-9946-
crisitem.author.orcid0000-0002-0254-6539-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Taran et al JVGR2008.pdfMain Article1.71 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

61
checked on Feb 7, 2021

Page view(s) 50

161
checked on Mar 27, 2024

Download(s)

28
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric