Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4512
DC FieldValueLanguage
dc.contributor.authorallMoretti, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallBaker, Don R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2008-12-09T09:33:14Zen
dc.date.available2008-12-09T09:33:14Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4512en
dc.description.abstractIn this paper we will discuss a simplified thermodynamic description for the saturation of FeS, either liquid or solid, in magmatic melts. The Conjugated-Toop–Samis–Flood–Grjotheim model [Moretti R. and Ottonello G., 2005. Solubility and speciation of sulfur in silicate melts, the Conjugated-Toop–Samis–Flood–Grjotheim (CTSFG) model. Geochimica et Cosmochimica Acta, 69, 801–823] has furnished the theoretical reference frame, since it already accounts for the solubility of gaseous sulfur and the speciation and oxidation state of sulfur in silicate melts. We provide a new model to predict the saturation of magmatic silicate melts with an FeS phase that is internally consistent with these previous parameterizations. The derived model provides an effective sulfogeobarometer, which is superior with respect to previous models. For magmas rising from depth to surface, our appraisal of molar volumes of sulfur-bearing species in silicate melts allows us to model oxidation–reduction processes at different pressures, and sulfur concentrations for saturationwith either liquid or solid phases. In this respect, the nature of the oxygen fugacity buffer is critical. On the basis of model results on some typical compositions of volcanological interest, the sulfur contents at sulfide saturation (SCSS) have been calculated and the results duplicate the experimental observations that the SCSS is positively correlatedwith pressure forwatersaturated acidic melts and negatively correlated with pressure for water-poor basaltic melts. This new model provides fO2–fS2 pairs of FeS saturation of natural silicatemelts. In caseswhere the redox constraint is lacking, the model can be used to investigate whether the dissolved sulfur content approaches SCSS or not, and if so, to estimate at which fO2 value the silicate melt is saturated with a sulfide phaseen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofChemical Geologyen
dc.relation.ispartofseries/256 (2008)en
dc.subjectSulfuren
dc.subjectSilicate melten
dc.subjectIron sulfideen
dc.subjectChemical thermodynamicsen
dc.titleModeling the interplay of fO2 and fS2 along the FeS-silicate melt equilibriumen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber286–298en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamicsen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocksen
dc.identifier.doi10.1016/j.chemgeo.2008.06.055en
dc.relation.referencesBalabin, A.I., Urusov, V.S., 1995. Recalibration of the sphalerite cosmobarometer: experimental and theoretical treatment. Geochimica et Cosmochimica Acta 59, 1401–1410. Bockrath, C., Ballhaus, C., Holzheid, A., 2004. Stabilities of laurite RuS2 and monosulfide liquid solution at magmatic temperature. Chemical Geology 208, 265–271. Boehler, R., 1992. Melting of the Fe–FeO and the Fe–FeS systems at high pressure: constraints on core temperatures. Earth and Planetary Science Letters 111, 217–222. Bradbury, J.W., 1983. Pyrrothite solubility in hydrous albite melts. Ph.D. Thesis, The Pennsylvania State University, p. 136. Buchanan, D.L., Nolan, J., 1979. Solubility of sulfur and sulfide immiscibility in synthetic tholeiitic melts and their relevance to Bushveld-complex rocks. Canadian Mineralogist 17, 483–494. Burgisser, A., Scaillet, B., 2007. Redox evolution of a degassing magma rising to the surface. Nature 445, 194–197. Carroll, M.R., Rutherford, M.J., 1985. Sulfide and sulfate saturation in hydrous silicate melts. Journal of Geophysical Research 90, 601–612. Carroll, M.R., Rutherford, M.J., 1987. The stability of igneous anhydrite: experimental results and implications for sulfur behavior in the 1982 El Chichon trachyandesite and other evolved magmas. Journal of Petrology 28, 781–801. Clemente, B., Scaillet, B., Pichavant, M., 2004. The solubility of sulphur in hydrous rhyolitic melts. Journal of Petrology 45, 2171–2196. Czamanske, G.K., Moore, J.G., 1977. Composition and phase chemistry of sulfide globules in basalt from the Mid-Atlantic Ridge rift valley near 37°N lat. Geological Society of America Bulletin 88, 587–599. Danckwerth, P.A., Hess, P.C., Rutherford, M.J., 1979. The solubility of sulfur in high-TiO2 mare basalts. Proc. 10th Lunar Planetary Sciences Conference, pp. 517–530. Delgado Martin, J., Gil, A.S.I., 2005. An integrated thermodynamic mixing model for sphalerite geobarometry from 300 to 850 °C and up to 1 GPa. Geochimica et Cosmochimica Acta 69, 995–1006. Duffy, J.A., 1992. A review of optical basicity and its applications to oxidic systems. Geochimica et Cosmochimica Acta 57, 3961–3970. Eley, D.D., Evans, M.G., 1938. Heats and entropy changes accompanying the solution of ions in water. Transactions of the Faraday Society 34, 1093–1112. Fincham, C.J., Richardson, F.D., 1954. The behavior of sulfur in silicate and aluminate melts. Proceedings of the Royal Society of London 223A, 40–61. Fleet, M.E., 2006. Phase Equilibria at High Temperatures. In: Vaughan, D.J. (Ed.), Sulfide Mineralogy and Geochemistry. Reviews in Mineralogy and Geochemistry, vol. 61, pp. 365–419. Flood, H., Grjotheim, T., 1952. Thermodynamic calculation of slag equilibria. Journal of the Iron and Steel Institute 71, 64–80. Fonseca, R.O.C., Campbell, I.H., O'Neill, St. C., Fitzgerald, J.D., 2008. Oxygen solubility and speciation in sulphide-rich mattes. Geochimica et Cosmochimic Acta 72 (11), 2619–2635. Froese, E., Gunter, A.E., 1976. A note on pyrrhotite-sulfur-vapor equilibrium. Economic Geology 71, 1589–1594. Giggenbach, W.F., 1996. Chemical composition of volcanic gases. In: Scarpa, R., Tilling, R.I. (Eds.), Monitoring and Mitigation of Volcano Hazards. Springer-Berlin, pp. 202–226. Gorbachev, N.S., 2006. Mineralogical and geochemical zoning and genesis of massive sulfide ores at the Oktyabr'sky deposit. Geology of Ore Deposits 48, 473–488. Haughton, D.R., Roeder, P.L., Skinner, B.J., 1974. Solubility of sulfur in mafic magmas. Economic Geology 69, 451–467. Hauri, E., 2002. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chemical Geology 183, 115–141. Hodges, F.N., 1974. The solubility of H2O in silicate melts. Carnegie Institute of Washington Year Book, vol. 60, pp. 125–134. Holzheid, A., Grove, T.L., 2002. Sulfur saturation limits in silicate melts and their implications for core formation scenarios for terrestrial planets. American Mineralogist 87, 227–237. James, F., Roos, M., 1977. MINUIT: A System for Function Minimisation and Analysis of Parameter Errors and Correlations. CERN Computer Center, Geneva. Jorgensen, C.K., 1962. Absorption Spectra and Chemical Bonding in Complexes. Pergamon Press, Oxford. Jorgensen, C.K., 1969. Oxidation Numbers and Oxidation States. Springer-Verlag, Berlin- Heidelberg-New York. Jugo, P.J., Luth, R.W., Richards, J.P., 2005. An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300 °C and 1.0 GPa. Journal of Petrology 46, 783–798. Kress, V., 1997. Thermochemistry of sulfide liquids. I. the system O–S–Fe at 1 bar. Contributions to Mineralogy and Petrology 127, 176–186. Kress, V., 2000. Termochemistry of sulfide liquids. II. Associated solution model for sulfide liquids in the system O–S–Fe. Contributions to Mineralogy and Petrology 139, 316–325. Lange, R.A., 1994. The effect of H2O, CO2 and F on the density and viscosity of silicate melts. In: Carroll, M.R., Holloway, J.R. (Eds.), Volatiles in Magmas. Mineralogical Society of America. Reviews in Mineralogy, vol. 30, pp. 331–369 Lange, R.A., Carmichael, I.S.E., 1987. Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3– Al2O3–TiO2–SiO2 liquids: new measurements and derived partial molar properties. Geochimica et Cosmochimica Acta 51, 2931–2946. Li, C., Ripley, E.M., 2005. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits. Mineralium Deposita 40, 218–230. Liu, Y., Samaha, N.-T., Baker, D.R., 2007. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts. Geochimica et Cosmochimica Acta 71, 1783–1799. Luhr, J.F., 1990. Experimental phase relations of water and sulfur saturated arc magmas and the 1982 eruptions of El Chichón volcano. Journal of Petrology 31, 1071–1114. Mathez, E.A., 1976. Sulfur solubility and magmatic sulfides in submarine basalt glass. Journal of Geophysical Research 81, 4269–4275. Mavrogenes, J.A., O'Neill, H. St. C.,1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochimica et Cosmochimica Acta 63, 1173–1180. Moretti, R., 2005. Polymerisation, basicity, oxidation state and their role in ionic modeling of silicate melts. Annals of Geophysics 48, 583–608. Moretti, R., Ottonello, G., 2003. Polymerization and disproportionation of iron and sulfur in silicate melts: insights from an optical basicity based approach. Journal of Non-Crystalline Solids 323, 111–119. Moretti, R., Papale, P., 2004. On the oxidation state and volatile behavior in multicomponent gas-melt equilibria. Chemical Geology 213, 265–280. Moretti, R., Ottonello, G., 2005. Solubility and speciation of sulfur in silicate melts, the Conjugated Toop–Samis–Flood–Grjotheim (CTSFG) model. Geochimica Cosmochimica Acta 69, 801–823. Naldrett, A.J., 1969. A portion of the system Fe–S–O between 900 and 1080 °C and its application to sulfide ore magmas. Journal of Petrology 10, 171–201. Naumov, G.B., Rhyzenko, B., Khodakovsky, I.L., 1971. Handbook of Thermodynamic Data. Atomizdat, Moscow. NIST, 2005. NIST Standard Reference Database Number 69, June 2005 Release (http:// webbook.nist.gov/chemistry/). O'Neill, H. St.C., Mavrogenes, J.A., 2002. The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400 °C and 1 bar. Journal of Petrology 43, 1049–1087. Ottonello, G., Moretti, R., 2004. Lux–Flood basicity of binary silicate melts. Journal of Physics and Chemistry of Solids 65, 1609–1614. Ottonello, G., Moretti, R., Marini, L., Vetuschi Zuccolini, M., 2001. On the oxidation state of iron in silicate melts and glasses: a thermochemical model. Chemical Geology 174, 157–179. Paillat, O., Elphick, E.C., Brown,W.L., 1992. The solubility of water in NaAlSi3O8 melts: a re-examination of Ab–H2O phase relationships and critical behavior at high pressures. Contributions to Mineralogy and Petrology 112, 490–500. Papale, P., Moretti, R., Barbato, D., 2006. The compositional dependence of the multicomponent volatile saturation surface in silicate melts. Chemical Geology 229, 78–95. Poulson, S.R., Ohmoto, H., 1990. An evaluation of solubility of sulfide sulfur in silicate melts from experimental data and natural samples. Chemical Geology 85, 57–75. Richet, P., Whittington, A., Holtz, F., Beherens, H., Ohlhorst, S., Wilke, M., 2000. Water and the density of silicate glasses. Contributions to Mineralogy and Petrology 138, 337–347. Sack, R.O., Ebel, D.S., 2006. Thermochemistry of Sulfide Mineral Solutions. In: D.J., Vaughan (Ed.), Sulfide Mineralogy and Geochemistry. Reviews in Mineralogy and Geochemistry, vol. 61, pp. 265–364. Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A32, 751–767. Silver, L.A., Ihinger, P.D., Stolper, E.M., 1990. The influence of bulk composition on the speciation of water in silicate glasses. Contributions to Mineralogy and Petrology 104, 142–162. Temkin, M., 1945. Mixtures of fused salts as ionic solutions. Acta Physica Chimica URSS 20, 411–420. Toulmin, P., Barton, P.B., 1964. A thermodynamic study of pyrite and pyrrhotite. Geochimica et Cosmochimica Acta 28, 641–671. Vaughan, D.J., Craig, J.R., 1978. Mineral Chemistry of Metal Sulfides. Cambridge University Press. Waldner, P., Pelton, A.D., 2005. Thermodynamic modeling of the Fe–S system. Journal of Phase Equilibria and Diffusion 26, 23–38. Wallace, P., Carmichael, I.S.E., 1992. Sulfur in basaltic magmas. Geochimica et Cosmochimica Acta 56, 1863–1874. Wendlandt, R.F., 1992. Sulfide saturation of basalt and andesite melts at high pressures and temperatures. American Mineralogist 67, 877–885en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMoretti, R.en
dc.contributor.authorBaker, Don R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCentro Interdipartimentale di Ricerche in Ingegneria Ambientale, Seconda Università di Napoli, Naples, Italy.-
crisitem.author.orcid0000-0003-2031-5192-
crisitem.author.orcid0000-0002-6543-3283-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
MorBak-08.pdf1.21 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

48
checked on Feb 10, 2021

Page view(s) 50

150
checked on Mar 27, 2024

Download(s)

27
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric