Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4502
DC FieldValueLanguage
dc.contributor.authorallPepe, S.; Istituto per il Rilevamento Elettromagnetico dell'Ambiente, CNR-Napoli, Italyen
dc.contributor.authorallSolaro, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallRicciardi, G. P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallTizzani, P.; Istituto per il Rilevamento Elettromagnetico dell'Ambiente, CNR-Napoli, Italyen
dc.date.accessioned2008-12-09T08:56:02Zen
dc.date.available2008-12-09T08:56:02Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4502en
dc.description.abstractWe investigated the existence of a fractal law (power law) distribution of size pyroclastic fragments erupted during the fallout phase of the 79 A.D. Plinian eruption at Mt. Vesuvius. In particular, we performed a particle size distribution analysis on 18 white and grey pumice samples collected in six sites distributed in the SW sector of Mt. Vesuvius. Our measurements show that the fragmentation of samples in the investigated range (from 32 mm to 850 μm) follows a power law, guaranteeing the scale invariance of the process. The relationship frequency-size distribution of the fragments is verified independently from the nature (i.e., pumices and lithics) and stratigraphic height of the considered samples in the pyroclastic deposit. Therefore, the fractal fragmentation theory can be indicated for evaluating the relationship between the intensity of fragmentation (fractal dimension D) and eruption energy. In this way the apparent chaotic distribution of the particles in the fallout deposits hides a self-organized complexity revealed by the retrieved power law distribution. We further remark that a key aspect of our analysis is the founded evidence that the fractal dimension of the lithics is systematically greater than that of the pumices.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries/177(2008)en
dc.subjectfragmentationen
dc.subjectpower law distributionen
dc.subjectfractal dimensionen
dc.subjectscale invarianten
dc.titleOn the fractal dimension of the fallout deposits: A case study of the 79 A.D. Plinian eruption at Mt. Vesuviusen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber288–299en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1016/j.jvolgeores.2008.01.023en
dc.relation.referencesBak, P., Tang, C., Wiesenfeld, K., 1988. Self-organized criticality. Physical Review, A 38, 364–374. Bennet, J.G., 1936. Broken coal. Journal of the Institute of Fuel 10, 22–39. Bindeman, I.N., 2005. Fragmentation phenomena in populations of magmatic crystals. American Mineralogist 90, 1801–1815. Borgia, A., Tizzani, P., Solaro, G., Manzo, M., Casu, F., Luongo, G., Pepe, A., Berardino, P., Fornaro, G., Sansosti, E., Ricciardi, G.P., Fusi, N., Di Donna, G., Lanari, R., 2005. Volcanic spreading of Vesuvius, a new paradigm for interpreting its volcanic activity. Geophysical Research Letters 32, L03303. doi:10.1029/2004GL022155. Brown,W.K.,Wohletz, K., 1995. Derivation of theWeibull distribution based on physical principles and its connection to the Rossin–Rammler and lognormal distribution. Journal of Applied Physics 78, 2758–2763. Carey, S., Sigurdsson, H., 1987. Temporal variations in column height and magma discharge rate during the 79 A.D. eruption of Vesuvius. Geological Society of America Bulletin 99, 303–314. Cioni, R., Marianelli, P., Sbrana, A., 1992. Dynamics of the A.D. 79 eruption: stratigraphic, sedimentological and geochemical on the successions from the Somma–Vesuvius southern and eastern sectors. Acta Vulcanologia 2, 109–123. Cioni, R., Marianelli, P., Sbrana, A., 1999. Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma–Vesuvius caldera. Bulletin of Volcanology 60, 207. Cioni, R., Marianelli, P., Santacroce, R., Sbrana, A., 2000. Plinian eruptions. In: Sigurdsson, H. (Ed.), Encyclopaedia of Volcanoes. Academic Press. Fujiwara, A., Kamimoto, G., Tsukamoto, A., 1977. Destruction of basaltic bodies by high velocity impact. Icarus 31, 277–288. Gurioli, L., Cioni, R., Sbrana, A., Zanella, E., 2002. Transport and deposition of pyroclastic density currents over an inhabited area: the deposits of the A.D. 79 eruption of Vesuvius at Herculaneum, Italy. Sedimentology 49, 929–953. Hartmann, W.K., 1969. Terrestrial, lunar, and interplanetary rock fragmentation. Icarus 10, 201–213. Kaminski, E., Jaupart, C., 1998. The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. Journal of Geophysical Research 103, 29759–29779. Kapteyn, J.C., van Uven, M.J., 1903. Skew Frequency Curves in Biology and Statistics. Groningen. Astronomical laboratory, Noordhoft. Kittleman, L.R., 1964. Application of Rosin's distribution in size-frequency analysis of clastic rocks. Journal of Sedimentary Research 34, 483–502. Kueppers, U., Perugini, D., Dingwell, D.B., 2006. “Explosive energy” during volcanic eruptions from fractal analysis of pyroclasts. Earth and Planetary Science Letters 248, 800–807. Lirer, L., Munno, R., Petrosino, P., Vinci, A., 1993. Tephrostratigraphy of the 79 A.D. pyroclastic deposits in perivolcanic areas of Mt. Vesuvio (Italy). Journal of Volcanology and Geothermal Research 58, 133–149. Mandelbrot, B.B., 1983. The Fractal Geometry of Nature. Freeman, New York. Papale, P., Dobran, F.,1993. Modelling of the ascent of magma during the Plinian eruption of Vesuvius in A.D. 79. Journal of Volcanology and Geothermal Research 58,101–132. Pepe, S., 2002. Analisi del processo di frammentazione delle eruzioni Pliniane. Il caso del Vesuvio. Master Degree Thesis. University of Naples Federico II. pp. 51. Sammis, C.G., Osborne, R.H., Anderson, J.L., Banerdt, M., White, P., 1986. Self-similar cataclasis in the formation on fault gouge. Pure and Applied Geophysics 123, 53–78. Santacroce, R. (Ed.), 1987. Somma–Vesuvius. CNR Quaderni della Ricerca Scientifica, vol. 8, p. 114. Schoutens, J.E., 1979. Empirical analysis of nuclear and high explosive cratering and ejecta. Nuclear Geophysics Sourcebook. Sheridan, M.F., 1971. Particle-size characteristics of pyroclastic tuffs. Journal of Geophysical Research 76 (23), 5627–5634. Sheridan, M.F., Barberi, F., Rosi, M., Santacroce, R., 1981. A model for Plinian eruptions of Vesuvius. Nature 289, 282–285. Sheridan, M.F.,Wohletz, K.H., Dehn, J.,1987. Discrimination of grain-size subpopulations in pyroclastic deposits. Geology 15 (4), 367–370. Sigurdsson, H., Cashdollar, S., Sparks, R.S.J., 1982. The eruption of Vesuvius in A.D. 79: reconstruction from historical and volcanological evidence. American Journal of Archeology 86, 39–51. Sigurdsson, H., Carey, S., Cornell,W., Pescatore, T., 1985. The eruption of Vesuvius in A.D. 79. National Geographic 1 (3), 332–387. Sigurdsson, H., Cornell, W., Carey, S., 1990. Influence of magma withdrawal on compositional gradients during the A.D. Vesuvius eruption. Nature 345, 519–521. Sparks, R.S.J., Bursik, M.I., Carey, S., Gilbert, J.S., Glaze, L.S., Sigurdsson, H., Woods, A.W., 1997. Volcanic plumes. Text Book. Wiley and Sons, Chichester, England. Turcotte, D.L., 1986a. A fractal model of crustal deformation. Tectonophysics 132, 261–269. Turcotte, D.L., 1986b. Fractals and fragmentation. Journal of Geophysical Research 91, 1921–1926. Turcotte, D.L., 1992. Fractals and Chaos in Geology and Geophysics. Cambridge University Press, U.K. 216 pp. Turcotte, D.L., 1997. Fractals and Chaos in Geology and Geophysics, 2nd edition. Cambridge University Press, U.K. 398 pp. Wohletz, K.H., Sheridan, M.F., Brown, W.K., 1989. Particle-size distribution and the sequential fragmentation transport-theory applied to volcanic ash. Journal of Geophysical Research 94, 15703–15721.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorPepe, S.en
dc.contributor.authorSolaro, G.en
dc.contributor.authorRicciardi, G. P.en
dc.contributor.authorTizzani, P.en
dc.contributor.departmentIstituto per il Rilevamento Elettromagnetico dell'Ambiente, CNR-Napoli, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto per il Rilevamento Elettromagnetico dell'Ambiente, CNR-Napoli, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCNR-IREA-
crisitem.author.deptIREA-CNR, Naples, Italy.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptCNR-IREA-
crisitem.author.orcid0000-0002-8692-7258-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
PepSol-08.pdf5.36 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

8
checked on Feb 10, 2021

Page view(s) 50

205
checked on Mar 27, 2024

Download(s)

39
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric