Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4500
DC FieldValueLanguage
dc.contributor.authorallPicozzi, M.; GeoForschungsZentrum Potsdamen
dc.contributor.authorallParolai, S.; GeoForschungsZentrum Potsdamen
dc.contributor.authorallBindi, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallStrollo, A.; GeoForschungsZentrum Potsdamen
dc.date.accessioned2008-12-09T08:50:06Zen
dc.date.available2008-12-09T08:50:06Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4500en
dc.description.abstractTo study the applicability of the passive seismic interferometry technique to near-surface geological studies, seismic noise recordings from a small scale 2-D array of seismic stations were performed in the test site of Nauen (Germany). Rayleigh wave Green's functions were estimated for different frequencies. A tomographic inversion of the traveltimes estimated for each frequency from the Green's functions is then performed, allowing the laterally varying 3-D surface wave velocity structure below the array to be retrieved at engineering–geotechnical scales. Furthermore, a 2-D S-wave velocity cross-section is obtained by combining 1-D velocity structures derived from the inversion of the dispersion curves extracted at several points along a profile where other geophysical analyses were performed. It is shown that the cross-section from passive seismic interferometry provides a clear image of the local structural heterogeneities that are in excellent agreement with georadar and geoelectrical results. Such findings indicate that the interferometry analysis of seismic noise is potentially of great interest for deriving the shallow 3-D velocity structure in urban areas.en
dc.language.isoEnglishen
dc.publisher.nameBlackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries1/176 (2008)en
dc.subjectInterferometryen
dc.subjectseismic tomographyen
dc.titleCharacterization of shallow geology by high frequency seismic noise tomographyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber164-174en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.identifier.doi10.1111/j.1365-246X.2008.03966.xen
dc.relation.referencesAki, K., 1957. Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bulletin of the Earthquake Research Institute, 35, 415-456. Arai, H. & Tokimatsu, K., 2004. S-wave velocity profiling by inversion of microtremor H/V spectrum, Bull. Seism. Soc. Am., 94, 1, 53-63. Ammon, C.J., & Vidale, J.E., 1993. Tomography without rays, Bull. Seism. Soc. Am., 83, 509-528. Bakulin, A., & Calvert, R., 2004. Virtual source: new method for imaging and 4D below complex overburden: 74th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 2477-2480. Bakulin, A., & Calvert, R., 2006. The virtual source method: Theory and case study. Geophysics, 71, no. 4, S1139-S1150. Bensen, G.D., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M., Yang, Y., & Ritzwoller, M.H., 2007. Processing ambient noise seismic data to obtain reliable broadband surface wave dispersion measurements, Geophys. J. Int 169, 1239-1260, doi: 10.1111/j.1365-246X.2007.03374.x. Brenguier, F., Shapiro, N.M., Campillo, M., Nercessian, A., & Ferrazzini, V., 2007. 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations, Geophysical Research Letters, 34, L02305, doi:10.1029/2006GL028586. Campillo, M., & Paul, A., 2003. Long-range correlations in the seismic coda, Science 299, 547–549. Capon, J., Greenfield, R.J., & Kolker, R.J., 1967. Multidimensional Maximum-Likelihood Processing of a Large Aperture Seismic Array, Proceedings of the IEEE, vol.55, N.2. Chávez-García, F. J., & Luzón, F., 2005. On the correlation of seismic microtremors, J. Geophys. Res., 110, B11313, doi:10.1029/2005JB003671 Chávez-García, F. J., & Rodríguez, M., 2007. The correlation of microtremors: empirical limits and relations between results in frequency and time domains, Geophys. J. Int., 171, 657-664. Cho, K. H., Herrmann, R. B., & Ammon, C. J., & Lee, K., 2007. Imaging the Upper Crust of the Korean Peninsula by Surface-Wave Tomography, Bull. Seism. Soc. Am.,97, 198-207, doi: 10.1785/0120060096 Curtis, A., Gerstoft, P., Sato, H., Snieder, R., & Wapenaar, K., 2006. Seismic interferometry – turning noise into signal, The Leading Edge, Vol. 25(9), pp.1082-1092. Davis, J.C., 2002. Statistics and Data Analysis in Geology. John Wiley & Sons. Dong, S., He, R., & Schuster, G., 2006. Interferometric prediction and leastsquares subtraction of surface waves: 76th Annual International Meeting, SEG, Expanded Abstract, 2783-2786. Draganov, D., Wapenaar, K., Mulder, W., Singer, J., & Verdel, A., 2007. Retrieval of reflections from seismic background-noise measurements, Geophysical Research Letters, 34, L04305. Dziewonski, A., Bloch, S., & Landisman, M., 1969. A technique for the analysis of transient seismic signals. Bull. Seism. Soc. Am., 59, 427-444. Efron, B., & Gong, G., 1983. A Leisurely Look at the Bootstrap, the Jackknife, and Cross Validation, The American Statistician, 37, 1, 36-48. Gerstoft, P., Sabra, K.G., Roux, P., Kuperman, W.A., & Fehler, M.C., 2006. Green’s functions extraction and surface-wave tomography from microseisms in southern California, Geophysics, 71, 4, 23-32. Golub G.H., & Reinsch C., 1970. Singular Value Decomposition and Least Square Solutions. In J. H. Wilkinson and C. Reinsch, editors, Linear Algebra, volume II of Handbook for Automatic Computations, chapter I/10, pages 134-151. Springer Verlag. Halliday, D.F., Curtis, A., Robertsson, J.O.A., and van Manen, D-J, 2007. Interferometric surface-wave isolation and removal. Geophysics, Vol. 72, No 5, A67-A73. Halliday, D.F., Curtis, A., & Kragh, E., 2008. Seismic surface waves in a suburban environment – active and passive interferometric methods, The Leading Edge, 27,210-218. Halliday, D.F., & Curtis, A., 2008. Seismic interferometry, surface waves, and source distribution. In press within Geophys. J. Int. Halliday, D.F., & Curtis, A., 2008. Seismic interferometry of scattered surface waves in attenuative media. Submitted to Kissingl, E., 1988. Geotomography with local earthquake data, Review of Geophysics, Vol. 25, N. 4, 659-698. Kugler, S., Bohlen, T., Forbriger, T., Bussat, S., & Klein, G., 2007. Scholte-wave tomography for shallow-water marine sediments, Geophys. J. Int., 168, 2, 551-570. Lai, C.G.,1998. Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization. PhD Diss., Georgia Inst. of Techn., Atlanta (Georgia, USA) Leveque, J.J., Rivera, L., & Wittlinger, G., 1993. On the use of the checker-board test to assess the resolution of tomographic inversions. Geophys. J. Int., 115, 313-318. Li, X.P., Zuehlsdorf, L., & Liebhartdt, G., 1996. Eliminating the effects of the surface weathered layer by using an inverse transfer function, Scientific Drilling, 5, 233-242. Lin, F-C, Ritwoller, M. H., Townend, J., Bannister, S., & Savage, M. K., 2007. Ambient noise Rayleigh wave tomography of New Zealand, Geophys. J. Int., 170, 649-666, doi: 10.1111/j.1365-246X.2007.03414x. Long, L.T., & Kocaoglu, A.H., 2001. Surface-Wave Group-Velocity Tomography for Shallow Structures. Journal of Environmental and Engineering Geophysics Publications, 71-81. Mehta, K., Snieder, R., & Graizer, V., 2007. Extraction of near-surface properties for a lossy layered medium using the propagator matrix, Geophys. J. Int., 169, 271–280 doi: 10.1111/j.1365-246X.2006.03303.x. Metha, K., Bakulin, A., Sheiman, J., Calvert, R., & Snieder, R., 2007. Improving the virtual source method by wavefield separation, Geophysics, 72, pp. V79-V86. Parolai,. S., Spallarossa, D., & Eva, C., 1997. Bootstrap inversion for Pn wave velocity in North-Western Italy, Annali di Geofisica, Vol. XL, 133-150. Parolai, S., Picozzi, M., Richwalski, S.M., & Milkereit, C., 2005. Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes, Geoph. Res. Lett., 32, doi: 10.1029/2004GL021115. Parolai, S., Richwalski, S.M., Milkereit, C. & Faeh, D., 2006. S-wave Velocity Profile for Earthquake Engineering Purposes for the Cologne Area (Germany), Bull Earthq. Eng., 65–94, doi:10.1007/s10518-005-5758-2. Parolai, S. 2008. Determination of dispersive phase velocities by Complex seismic trace Analysis of Surface Wave (CASW). Soil Dyn Earthquake Eng, doi:10.1016/j.soildyn.2008.05.008. Paul, A., Campillo, M., Margerin, L., & Larose, E., 2005. Empirical synthesis of time asymmetrical Green functions from the correlation of coda waves, Journal of Geophysical Research, V. 110, B08302, doi:10.1029/2004JB003521. Pedersen, H.A., Krueger, F. & SVEKALAPKO Seismic Tomography Working Group, 2007. Influence of the seismic noise characteristics on noise correlations in the Baltic shield, Geophys. J. Int., 168, 197–210 doi: 10.1111/j.1365-246X.2006.03177.x Picozzi, M., Parolai, S., & Albarello, D., 2005. Statistical Analysis of Noise Horizontal to Vertical Spectral Ratios (HVSR). Bull. Seism. Soc. Am., 95, 1779-1786. Picozzi, M., Parolai, S., & Richwalski, S.M., 2005. Joint inversion of H/V ratios and dispersion curves from seismic noise: Estimating the S-wave velocity of bedrock. Geoph. Res. Lett., 32, No.11 doi: 10.1029/2005GL022878. Picozzi, M., & Albarello, D., 2007. Combining Genetic and Linearized algorithms for a two-step joint inversion of Rayleigh wave dispersion and H/V spectral ratio curves. Geophysical Journal International Vol. 169 Issue 1 Page 189 April 2007. Picozzi, M., Strollo, A., Parolai, S., Durukal, E., Özel, O., Karabulut, S., Zschau, J., & Erdik, M., 2007.. Site characterization by seismic noise in Istanbul, Turkey. doi: 10.1016/j.soildyn.2008.05.007. Sabra, K.G., Gerstoft, P., Roux, P., Kuperman, W.A., & Fehler, M.C., 2005. Surface wave tomography from microseisms in Southern California, Geophys. Res. Lett., 32, L14311, doi:10.1029/2005GL023155. Schuster, G.T., 2001. Theory of daylight/interferometric imaging : tutorial : 63rd Meeting, European Association of Geoscientists and Engineers, Extended Abstracts, Session :A32. Schuster, G.T., Yu, J., Sheng, J., & Rickett, J., 2004. Interferometric/daylight seismic imaging: Geophysical Journal International, 157, 838-852. Shapiro, N.M., & Singh, S.K., 1999. A systematic error in estimating surface-wave group velocity dispersion curve and a procedure for its correction, Bull. Seism. Soc. Am., 89, 1138-1142. Shapiro, N.M., & Campillo, M., 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Lett., 31, L07614, doi:10.1029/2004GL019491. Shapiro, N.M., Campillo, M., Stehly, L., & Ritzwoller, M., 2005. High resolution surface wave tomography from ambient seismic noise, Science, 307, 1615–1618. Snieder, R., 2004. Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E, 69, doi:10.1103/PhysRevE.69.046610. Snieder, R., & Safak, E., 2006. Extracting the Building Response Using Seismic Iterferometry: Theory and Apllication to the Millikan Library in Pasadena, California, Bull. Seism. Soc. Am., 96, 2, 586-598. Stehly, L., Campillo, M., & Shapiro, N. M., 2006. A study of the seismic noise from its long-range correlation properties, J. Geophys. Res., B10306, doi:10.1029/2005JB004237 Tokimatsu, K., Tamura, S., and Kojima, H., 1992. Effects of multiple modes on Rayleigh wave dispersion characteristics. J. Geotech. Eng., 118, 1529-1543. Tokimatsu, K., 1997. Geotechnical site characterization using surface waves. Earthquake Geotechnical Engineering, Ishihara (ed.), Balkema, Rotterdam, 1333-1368. Tukey, J. E., 1974. Introduction to today’s data analysis, Proc. of the Conference on Critical Evaluation of Chemical and Physical Structural Information, D. R. Lide, Jr., and M. A. Paul (Editors), National Academy of Sciences, Washington, D.C., 3–14. Wapenaar, K., 2004. Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation, Phys. Rev. Lett. 93, 254301. Wapenaar, K. & J. Fokkema, 2006. Green's function representations for seismic interferometry, Geophyscis, 71, SI33-SI44. Weaver, R.L., & Lobkis, O.I., 2001. Ultrasonics without a source: Thermal fluctuation correlation at MHz frequencies, Phys. Rev. Lett. 87, 134301–134304. Weaver, R. L., & Lobkis, O. I., 2004. Diffuse fields in open systems and the emergence of the Green’s function, J. Acoust. Soc. Am., 116, 2731–2734. Wiggins, R. A., 1972. The general inverse problem: Implication of surface waves and free oscillations for Earth Structure, Rev. Geophys., 10, 251–285. Yamanaka, H. & Ishida, H., 1996. Application of Generic algorithms to an inversion of surface-wave dispersion data, Bull. Seism. Soc. Am., 86, 436-444. Yang, Y., Ritzwoller, M. H., Levshin, A. L. & Shapiro, N. M. 2007. Ambient noise Rayleigh wave tomography across Europe, Geophys. J. Int., 168, 259–274, doi: 10.1111/j.1365-246X.2006.03203.x. Yang, Y., & Ritzwoller, M.H., 2008. Characteristics of ambient seismic noise as a source for surface wave tomography, Geochemistry Geophysics Geosystems, Vol. 9, N. 2, doi:10.1029/2007GC001814 Yaramanci, U., Lange, G., & Hertrich, M., 2002. Aquifer characterisation using Surface NMR jointly with other geophysical techniques at the Nauen/Berlin test site, Journal of Applied Geophysics, 50, 47-65. Yao, H., van der Hilst, R.D., & De Hoop, M.V., 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two station analysis: I—Phase velocity maps, Geophys. J. Int., 166, 732–744. Yokoi, T., & Margaryan, S., 2008. Consistency of the spatial autocorrelation method with seismic interferometry and its consequence, Geophysical Prospecting, 56, 435-451.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorPicozzi, M.en
dc.contributor.authorParolai, S.en
dc.contributor.authorBindi, D.en
dc.contributor.authorStrollo, A.en
dc.contributor.departmentGeoForschungsZentrum Potsdamen
dc.contributor.departmentGeoForschungsZentrum Potsdamen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.departmentGeoForschungsZentrum Potsdamen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità di Napoli-
crisitem.author.deptOGS - Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-
crisitem.author.orcid0000-0002-9084-7488-
crisitem.author.orcid0000-0002-8619-2220-
crisitem.author.orcid0000-0001-9602-6077-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
TomoNoise_Picozzi_et_al_2008_Reviewed4.pdfmain article906.22 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

90
checked on Feb 7, 2021

Page view(s) 50

224
checked on Apr 17, 2024

Download(s) 10

601
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric